Suppr超能文献

响应ERK1/2介导的β-抑制蛋白2磷酸化的受体隔离调控GPCR细胞表面表达的稳态水平。

Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.

作者信息

Paradis Justine S, Ly Stevenson, Blondel-Tepaz Élodie, Galan Jacob A, Beautrait Alexandre, Scott Mark G H, Enslen Hervé, Marullo Stefano, Roux Philippe P, Bouvier Michel

机构信息

Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 1J4, Canada;

Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3C 1J4, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C IJ4, Canada;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.

Abstract

MAPKs are activated in response to G protein-coupled receptor (GPCR) stimulation and play essential roles in regulating cellular processes downstream of these receptors. However, very little is known about the reciprocal effect of MAPK activation on GPCRs. To investigate possible crosstalk between the MAPK and GPCRs, we assessed the effect of ERK1/2 on the activity of several GPCR family members. We found that ERK1/2 activation leads to a reduction in the steady-state cell-surface expression of many GPCRs because of their intracellular sequestration. This subcellular redistribution resulted in a global dampening of cell responsiveness, as illustrated by reduced ligand-mediated G-protein activation and second-messenger generation as well as blunted GPCR kinases and β-arrestin recruitment. This ERK1/2-mediated regulatory process was observed for GPCRs that can interact with β-arrestins, such as type-2 vasopressin, type-1 angiotensin, and CXC type-4 chemokine receptors, but not for the prostaglandin F receptor that cannot interact with β-arrestin, implicating this scaffolding protein in the receptor's subcellular redistribution. Complementation experiments in mouse embryonic fibroblasts lacking β-arrestins combined with in vitro kinase assays revealed that β-arrestin-2 phosphorylation on Ser14 and Thr276 is essential for the ERK1/2-promoted GPCR sequestration. This previously unidentified regulatory mechanism was observed after constitutive activation as well as after receptor tyrosine kinase- or GPCR-mediated activation of ERK1/2, suggesting that it is a central node in the tonic regulation of cell responsiveness to GPCR stimulation, acting both as an effector and a negative regulator.

摘要

丝裂原活化蛋白激酶(MAPKs)在G蛋白偶联受体(GPCR)受到刺激时被激活,并在调节这些受体下游的细胞过程中发挥重要作用。然而,关于MAPK激活对GPCR的反向作用却知之甚少。为了研究MAPK与GPCR之间可能存在的相互作用,我们评估了细胞外信号调节激酶1/2(ERK1/2)对几种GPCR家族成员活性的影响。我们发现,ERK1/2的激活导致许多GPCR的稳态细胞表面表达减少,这是由于它们被隔离在细胞内。这种亚细胞重新分布导致细胞反应性整体减弱,表现为配体介导的G蛋白激活和第二信使生成减少,以及GPCR激酶和β抑制蛋白募集减弱。对于能够与β抑制蛋白相互作用的GPCR,如2型血管加压素受体、1型血管紧张素受体和CXC趋化因子4型受体,观察到了这种ERK1/2介导的调节过程,但对于不能与β抑制蛋白相互作用的前列腺素F受体则未观察到,这表明这种支架蛋白参与了受体的亚细胞重新分布。在缺乏β抑制蛋白的小鼠胚胎成纤维细胞中进行的互补实验,结合体外激酶分析表明,β抑制蛋白2在丝氨酸14和苏氨酸276位点的磷酸化对于ERK1/2促进的GPCR隔离至关重要。在ERK1/2组成型激活以及受体酪氨酸激酶或GPCR介导的激活后均观察到了这种先前未被识别的调节机制,这表明它是细胞对GPCR刺激反应性的紧张调节中的一个核心节点,既作为效应器又作为负调节因子发挥作用。

相似文献

1
Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5160-8. doi: 10.1073/pnas.1508836112. Epub 2015 Aug 31.
2
The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation.
Biochim Biophys Acta. 2013 Oct;1833(10):2322-33. doi: 10.1016/j.bbamcr.2013.06.013. Epub 2013 Jun 21.
5
beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor.
J Biol Chem. 2006 Jan 13;281(2):1261-73. doi: 10.1074/jbc.M506576200. Epub 2005 Nov 9.
6
The role of beta-arrestins in the formyl peptide receptor-like 1 internalization and signaling.
Cell Signal. 2007 Sep;19(9):1939-48. doi: 10.1016/j.cellsig.2007.05.006. Epub 2007 May 29.
8
The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation.
PLoS One. 2011;6(12):e28723. doi: 10.1371/journal.pone.0028723. Epub 2011 Dec 12.
9
The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling.
Cell Signal. 2007 Jan;19(1):32-41. doi: 10.1016/j.cellsig.2006.05.020. Epub 2006 Jun 3.

引用本文的文献

1
Myeloid beta-arrestin 2 depletion attenuates metabolic dysfunction-associated steatohepatitis via the metabolic reprogramming of macrophages.
Cell Metab. 2024 Oct 1;36(10):2281-2297.e7. doi: 10.1016/j.cmet.2024.08.010. Epub 2024 Sep 20.
2
Computationally designed GPCR quaternary structures bias signaling pathway activation.
Nat Commun. 2022 Nov 11;13(1):6826. doi: 10.1038/s41467-022-34382-7.
3
Biochemical and physiological insights into TRH receptor-mediated signaling.
Front Cell Dev Biol. 2022 Sep 6;10:981452. doi: 10.3389/fcell.2022.981452. eCollection 2022.
4
The Role of Kisspeptin in the Control of the Hypothalamic-Pituitary-Gonadal Axis and Reproduction.
Front Endocrinol (Lausanne). 2022 Jun 28;13:925206. doi: 10.3389/fendo.2022.925206. eCollection 2022.
6
The α-Arrestin ARRDC3 Is an Emerging Multifunctional Adaptor Protein in Cancer.
Antioxid Redox Signal. 2022 May;36(13-15):1066-1079. doi: 10.1089/ars.2021.0193. Epub 2022 Jan 4.
7
Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen.
Nat Commun. 2021 Aug 3;12(1):4688. doi: 10.1038/s41467-021-24968-y.
8
The RanBP2/RanGAP1-SUMO complex gates β-arrestin2 nuclear entry to regulate the Mdm2-p53 signaling axis.
Oncogene. 2021 Mar;40(12):2243-2257. doi: 10.1038/s41388-021-01704-w. Epub 2021 Mar 1.
9
Beta-Arrestins and Receptor Signaling in the Vascular Endothelium.
Biomolecules. 2020 Dec 23;11(1):9. doi: 10.3390/biom11010009.
10
Modulation of polycystic kidney disease by G-protein coupled receptors and cyclic AMP signaling.
Cell Signal. 2020 Aug;72:109649. doi: 10.1016/j.cellsig.2020.109649. Epub 2020 Apr 23.

本文引用的文献

1
Differential regulation of endosomal GPCR/β-arrestin complexes and trafficking by MAPK.
J Biol Chem. 2014 Aug 22;289(34):23302-17. doi: 10.1074/jbc.M114.568147. Epub 2014 Jul 11.
2
Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.
Mol Pharmacol. 2014 Mar;85(3):492-509. doi: 10.1124/mol.113.088880. Epub 2013 Dec 23.
3
Pepducin targeting the C-X-C chemokine receptor type 4 acts as a biased agonist favoring activation of the inhibitory G protein.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):E5088-97. doi: 10.1073/pnas.1312515110. Epub 2013 Dec 5.
4
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
5
Biasing the prostaglandin F2α receptor responses toward EGFR-dependent transactivation of MAPK.
Mol Endocrinol. 2012 Jul;26(7):1189-202. doi: 10.1210/me.2011-1245. Epub 2012 May 25.
6
ERK1/2 MAP kinases: structure, function, and regulation.
Pharmacol Res. 2012 Aug;66(2):105-43. doi: 10.1016/j.phrs.2012.04.005. Epub 2012 Apr 27.
8
Engagement of β-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation.
Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):E1028-37. doi: 10.1073/pnas.1112422109. Epub 2012 Apr 9.
9
Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
J Biol Chem. 2012 Mar 16;287(12):9028-40. doi: 10.1074/jbc.M111.311803. Epub 2012 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验