Suppr超能文献

基于耐酸性表型对肠出血性大肠杆菌菌株的特征分析

Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes.

作者信息

Bhagwat Arvind A, Chan Lynn, Han Rachel, Tan Jasmine, Kothary Mahendra, Jean-Gilles Junia, Tall Ben D

机构信息

Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Bldg. 002, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.

出版信息

Infect Immun. 2005 Aug;73(8):4993-5003. doi: 10.1128/IAI.73.8.4993-5003.2005.

Abstract

Acid resistance is perceived to be an important property of enterohemorrhagic Escherichia coli strains, enabling the organisms to survive passage through the acidic environment of the stomach so that they may colonize the mammalian gastrointestinal tract and cause disease. Accordingly, the organism has developed at least three genetically and physiologically distinct acid resistance systems which provide different levels of protection. The glutamate-dependent acid resistance (GDAR) system utilizes extracellular glutamate to protect cells during extreme acid challenges and is believed to provide the highest protection from stomach acidity. In this study, the GDAR system of 82 pathogenic E. coli isolates from 34 countries and 23 states within the United States was examined. Twenty-nine isolates were found to be defective in inducing GDAR under aerobic growth conditions, while five other isolates were defective in GDAR under aerobic, as well as fermentative, growth conditions. We introduced rpoS on a low-copy-number plasmid into 26 isolates and were able to restore GDAR in 20 acid-sensitive isolates under aerobic growth conditions. Four isolates were found to be defective in the newly discovered LuxR-like regulator GadE (formerly YhiE). Defects in other isolates could be due to a mutation(s) in a gene(s) with an as yet undefined role in acid resistance since GadE and/or RpoS could not restore acid resistance. These results show that in addition to mutant alleles of rpoS, mutations in gadE exist in natural populations of pathogenic E. coli. Such mutations most likely alter the infectivity of individual isolates and may play a significant role in determining the infective dose of enterohemorrhagic E. coli.

摘要

耐酸性被认为是肠出血性大肠杆菌菌株的一项重要特性,它使这些微生物能够在通过胃部的酸性环境时存活下来,从而得以在哺乳动物胃肠道中定殖并引发疾病。因此,该生物体已进化出至少三种在遗传和生理上截然不同的耐酸系统,这些系统提供不同程度的保护。依赖谷氨酸的耐酸(GDAR)系统利用细胞外谷氨酸在极端酸性挑战期间保护细胞,据信它能提供对胃酸的最高保护。在本研究中,对来自34个国家和美国23个州的82株致病性大肠杆菌分离株的GDAR系统进行了检测。发现29株分离株在有氧生长条件下诱导GDAR存在缺陷,而另外5株分离株在有氧以及发酵生长条件下的GDAR均存在缺陷。我们将低拷贝数质粒上的rpoS导入26株分离株,并且能够在有氧生长条件下使20株酸敏感分离株恢复GDAR。发现4株分离株在新发现的类LuxR调节因子GadE(以前称为YhiE)中存在缺陷。其他分离株的缺陷可能是由于在耐酸中作用尚未明确的基因发生了突变,因为GadE和/或RpoS无法恢复耐酸性。这些结果表明,除了rpoS的突变等位基因外,致病性大肠杆菌的自然群体中还存在gadE的突变。此类突变很可能会改变单个分离株的感染性,并且可能在确定肠出血性大肠杆菌的感染剂量方面发挥重要作用。

相似文献

1
Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes.
Infect Immun. 2005 Aug;73(8):4993-5003. doi: 10.1128/IAI.73.8.4993-5003.2005.
3
Role of RNA polymerase sigma-factor (RpoS) in induction of glutamate-dependent acid-resistance of Escherichia albertii under anaerobic conditions.
FEMS Microbiol Lett. 2008 Jun;283(1):75-82. doi: 10.1111/j.1574-6968.2008.01153.x. Epub 2008 Apr 14.
4
The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli.
Mol Microbiol. 2004 Nov;54(4):948-61. doi: 10.1111/j.1365-2958.2004.04312.x.
6
Functional heterogeneity of RpoS in stress tolerance of enterohemorrhagic Escherichia coli strains.
Appl Environ Microbiol. 2006 Jul;72(7):4978-86. doi: 10.1128/AEM.02842-05.
10
GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12.
Mol Microbiol. 2003 Sep;49(5):1309-20. doi: 10.1046/j.1365-2958.2003.03633.x.

引用本文的文献

1
Molecular evolution and population genetics of glutamate decarboxylase acid resistance pathway in lactic acid bacteria.
Front Genet. 2023 Jan 26;14:1027156. doi: 10.3389/fgene.2023.1027156. eCollection 2023.
2
Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic .
Antibiotics (Basel). 2021 May 2;10(5):522. doi: 10.3390/antibiotics10050522.
3
4
A low gastric pH mouse model to evaluate live attenuated bacterial vaccines.
PLoS One. 2014 Jan 29;9(1):e87411. doi: 10.1371/journal.pone.0087411. eCollection 2014.
7
Hypervirulent-host-associated Citrobacter rodentium cells have poor acid tolerance.
Curr Microbiol. 2013 May;66(5):522-6. doi: 10.1007/s00284-012-0298-x. Epub 2013 Jan 18.
8
Escherichia coli lacking RpoS are rare in natural populations of non-pathogens.
G3 (Bethesda). 2012 Nov;2(11):1341-4. doi: 10.1534/g3.112.003855. Epub 2012 Nov 1.
10
Polymorphisms in rpoS and stress tolerance heterogeneity in natural isolates of Cronobacter sakazakii.
Appl Environ Microbiol. 2012 Jun;78(11):3975-84. doi: 10.1128/AEM.07835-11. Epub 2012 Mar 23.

本文引用的文献

1
Stationary-phase physiology.
Annu Rev Microbiol. 2004;58:161-81. doi: 10.1146/annurev.micro.58.030603.123818.
2
GadY, a small-RNA regulator of acid response genes in Escherichia coli.
J Bacteriol. 2004 Oct;186(20):6698-705. doi: 10.1128/JB.186.20.6698-6705.2004.
4
A regulatory trade-off as a source of strain variation in the species Escherichia coli.
J Bacteriol. 2004 Sep;186(17):5614-20. doi: 10.1128/JB.186.17.5614-5620.2004.
7
Pathogenic Escherichia coli.
Nat Rev Microbiol. 2004 Feb;2(2):123-40. doi: 10.1038/nrmicro818.
8
General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli.
Genetics. 2004 Feb;166(2):669-80. doi: 10.1534/genetics.166.2.669.
10
Regulation of the glutamate-dependent acid-resistance system of diarrheagenic Escherichia coli strains.
FEMS Microbiol Lett. 2003 Oct 10;227(1):39-45. doi: 10.1016/S0378-1097(03)00646-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验