Gong Shimei, Ma Zhuo, Foster John W
Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
Mol Microbiol. 2004 Nov;54(4):948-61. doi: 10.1111/j.1365-2958.2004.04312.x.
Escherichia coli survives pH 2 acid stress at a level rivalling Helicobacter pylori. Of the three E. coli acid resistance systems involved, the one most efficient and most studied uses isozymes of glutamate decarboxylase (GadA/GadB) to consume intracellular protons, and a glutamate:gamma-amino butyric acid (GABA) anti-porter (GadC) to expel GABA in exchange for extracellular glutamate. Because acid resistance is a critical factor in resisting stomach acidity, mechanisms that control this system are extremely important. Here we show that an Era-like, molecular switch GTPase called TrmE regulates glutamate-dependent acid resistance. Western blot analysis revealed a TrmE-dependent, glucose-induced system and a TrmE-independent, glucose-repressed pathway. Gene fusion studies indicated that the TrmE requirement for GadA/B production takes place at both the transcriptional and translational levels. TrmE controls GAD transcription by affecting the expression of GadE, the essential activator of the gadA and gadBC genes. TrmE most probably controls gadE expression indirectly by influencing the synthesis or activity of an unknown regulator that binds the gadE control region. Translational control of GAD production by TrmE appears to be more direct, affecting synthesis of the decarboxylase and the anti-porter proteins. TrmE GTPase activity was critical for both the transcriptional and translational effects. Thus, TrmE is part of an increasingly complex control network designed to integrate diverse physiological signals and forecast future exposures to extreme acid. The significance of this network extends beyond acid resistance as the target of this control, GadE, regulates numerous genes in addition to gadA/BC.
大肠杆菌在pH 2的酸胁迫下的存活水平可与幽门螺杆菌相媲美。在参与的三种大肠杆菌酸抗性系统中,最有效且研究最多的系统利用谷氨酸脱羧酶(GadA/GadB)的同工酶消耗细胞内质子,并利用谷氨酸:γ-氨基丁酸(GABA)反向转运体(GadC)排出GABA以交换细胞外谷氨酸。由于酸抗性是抵抗胃酸的关键因素,因此控制该系统的机制极为重要。在这里,我们表明一种名为TrmE的类Era分子开关GTP酶调节谷氨酸依赖性酸抗性。蛋白质印迹分析揭示了一个TrmE依赖性、葡萄糖诱导的系统和一个TrmE非依赖性、葡萄糖抑制的途径。基因融合研究表明,TrmE对GadA/B产生的需求发生在转录和翻译水平。TrmE通过影响gadA和gadBC基因的必需激活剂GadE的表达来控制GAD转录。TrmE很可能通过影响与gadE控制区域结合的未知调节因子的合成或活性间接控制gadE表达。TrmE对GAD产生的翻译控制似乎更直接,影响脱羧酶和反向转运体蛋白的合成。TrmE GTP酶活性对转录和翻译效应都至关重要。因此,TrmE是一个日益复杂的控制网络的一部分,该网络旨在整合各种生理信号并预测未来暴露于极端酸性环境的情况。这个网络的意义不仅限于作为该控制目标的酸抗性,因为该控制的靶点GadE除了调节gadA/BC外,还调节许多基因。