乳酸菌中谷氨酸脱羧酶耐酸途径的分子进化与群体遗传学
Molecular evolution and population genetics of glutamate decarboxylase acid resistance pathway in lactic acid bacteria.
作者信息
Sezgin Efe, Tekin Burcu
机构信息
Department of Food Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey.
Biotechnology Interdisciplinary Program, Izmir Institute of Technology, Urla, Izmir, Turkey.
出版信息
Front Genet. 2023 Jan 26;14:1027156. doi: 10.3389/fgene.2023.1027156. eCollection 2023.
Glutamate decarboxylase (GAD) pathway (GDP) is a major acid resistance mechanism enabling microorganisms' survival in low pH environments. We aimed to study the molecular evolution and population genetics of GDP in Lactic Acid Bacteria (LAB) to understand evolutionary processes shaping adaptation to acidic environments comparing species where the GDP genes are organized in an operon structure () versus lack of an operon structure (). Within species molecular population genetic analyses of GDP genes in and sampled from diverse fermented food and other environments showed abundant synonymous and non-synonymous nucleotide diversity, mostly driven by low frequency changes, distributed throughout the coding regions for all genes in both species. GAD genes showed higher level of replacement polymorphism compared to transporter genes ( and ) for both species, and GAD genes that are outside of an operon structure showed even higher level of replacement polymorphism. Population genetic tests suggest negative selection against replacement changes in all genes. Molecular structure and amino acid characteristics analyses showed that in none of the GDP genes replacement changes alter 3D structure or charge distribution supporting negative selection against non-conservative amino acid changes. Phylogenetic and between species divergence analyses suggested adaptive protein evolution on GDP genes comparing phylogenetically distant species, but conservative evolution comparing closely related species. GDP genes within an operon structure showed slower molecular evolution and higher conservation. All GAD and transporter genes showed high codon usage bias in examined LAB species suggesting high expression and utilization of acid resistance genes. Substantial discordances between species, GAD, and transporter gene tree topologies were observed suggesting molecular evolution of GDP genes do not follow speciation events. Distribution of operon structure on the species tree suggested multiple independent gain or loss of operon structure in LABs. In conclusion, GDP genes in LABs exhibit a dynamic molecular evolutionary history shaped by gene loss, gene transfer, negative and positive selection to maintain its active role in acid resistance mechanism, and enable organisms to thrive in acidic environments.
谷氨酸脱羧酶(GAD)途径(GDP)是一种主要的酸抗性机制,使微生物能够在低pH环境中生存。我们旨在研究乳酸菌(LAB)中GDP的分子进化和群体遗传学,以了解塑造对酸性环境适应性的进化过程,比较GDP基因以操纵子结构组织的物种()与缺乏操纵子结构的物种()。在从不同发酵食品和其他环境中采样的和内对GDP基因进行的种内分子群体遗传分析显示,存在丰富的同义核苷酸多样性和非同义核苷酸多样性,主要由低频变化驱动,分布在两个物种所有基因的编码区域。与两个物种的转运蛋白基因(和)相比,GAD基因显示出更高水平的替代多态性,并且处于操纵子结构之外的GAD基因显示出更高水平的替代多态性。群体遗传测试表明对所有基因的替代变化存在负选择。分子结构和氨基酸特征分析表明,在所有GDP基因中,替代变化均未改变三维结构或电荷分布,支持对非保守氨基酸变化的负选择。系统发育和种间分歧分析表明,在比较系统发育距离较远的物种时,GDP基因存在适应性蛋白质进化,但在比较密切相关的物种时则是保守进化。操纵子结构内的GDP基因显示出较慢的分子进化和更高的保守性。在所研究的LAB物种中,所有GAD和转运蛋白基因均显示出较高的密码子使用偏好,表明酸抗性基因的高表达和利用。观察到物种、GAD和转运蛋白基因树拓扑结构之间存在大量不一致,表明GDP基因的分子进化不遵循物种形成事件。操纵子结构在物种树上的分布表明LAB中操纵子结构存在多次独立的获得或丧失。总之,LAB中的GDP基因表现出动态的分子进化历史,其受到基因丢失、基因转移、负选择和正选择的影响,以维持其在酸抗性机制中的积极作用,并使生物体能够在酸性环境中茁壮成长。