Kang Seong Ho, Park Mira, Cho Keunchang
Department of Chemistry, Chonbuk National University, Jeonju 561-756, South Korea.
Electrophoresis. 2005 Aug;26(16):3179-84. doi: 10.1002/elps.200500240.
We evaluated a novel strategy for fast diagnosis by microchip electrophoresis (ME), using programmed field strength gradients (PFSG) in a conventional glass double-T microfluidic chip. The ME-PFSG allows for the ultrafast separation and enhanced resolving power for target DNA fragments. These results are based on electric field strength gradients (FSG) that use an ME separation step in a sieving gel matrix poly-(ethylene oxide). The gradient can develop staircase or programmed shapes FSG over the time. The PFSG method could be easily used to increase separation efficiency and resolution in ME separation of specific size DNA fragments. Compared to ME that uses a conventional and constantly applied electric field (isoelectrostatic) method, the ME-PFSG achieved about 15-fold faster analysis time during the separation of 100 bp DNA ladder. The ME-PFSG was also applied to the fast analysis of the PCR products, 591 and 1191 bp DNA fragments from the 18S rRNA of Babesia gibsoni and Babesia caballi.
我们评估了一种通过微芯片电泳(ME)进行快速诊断的新策略,该策略在传统玻璃双T型微流控芯片中使用程序场强梯度(PFSG)。ME-PFSG可实现目标DNA片段的超快速分离并提高分辨能力。这些结果基于电场强度梯度(FSG),其在筛分凝胶基质聚环氧乙烷中使用ME分离步骤。该梯度可随时间形成阶梯状或程序形状的FSG。PFSG方法可轻松用于提高特定大小DNA片段ME分离中的分离效率和分辨率。与使用传统恒定电场(等静电)方法的ME相比,ME-PFSG在分离100 bp DNA梯时的分析时间快约15倍。ME-PFSG还应用于吉氏巴贝斯虫和马巴贝斯虫18S rRNA的PCR产物、591和1191 bp DNA片段的快速分析。