Suppr超能文献

细胞生物学中视频成像的特征点跟踪与轨迹分析

Feature point tracking and trajectory analysis for video imaging in cell biology.

作者信息

Sbalzarini I F, Koumoutsakos P

机构信息

Institute of Computational Science, ETH Zürich, 8092 Zürich, Switzerland.

出版信息

J Struct Biol. 2005 Aug;151(2):182-95. doi: 10.1016/j.jsb.2005.06.002.

Abstract

This paper presents a computationally efficient, two-dimensional, feature point tracking algorithm for the automated detection and quantitative analysis of particle trajectories as recorded by video imaging in cell biology. The tracking process requires no a priori mathematical modeling of the motion, it is self-initializing, it discriminates spurious detections, and it can handle temporary occlusion as well as particle appearance and disappearance from the image region. The efficiency of the algorithm is validated on synthetic video data where it is compared to existing methods and its accuracy and precision are assessed for a wide range of signal-to-noise ratios. The algorithm is well suited for video imaging in cell biology relying on low-intensity fluorescence microscopy. Its applicability is demonstrated in three case studies involving transport of low-density lipoproteins in endosomes, motion of fluorescently labeled Adenovirus-2 particles along microtubules, and tracking of quantum dots on the plasma membrane of live cells. The present automated tracking process enables the quantification of dispersive processes in cell biology using techniques such as moment scaling spectra.

摘要

本文提出了一种计算效率高的二维特征点跟踪算法,用于自动检测和定量分析细胞生物学中视频成像记录的粒子轨迹。跟踪过程不需要对运动进行先验数学建模,它是自初始化的,能够区分虚假检测,并且可以处理临时遮挡以及粒子在图像区域中的出现和消失。该算法的效率在合成视频数据上得到验证,与现有方法进行了比较,并针对广泛的信噪比评估了其准确性和精度。该算法非常适合依赖低强度荧光显微镜的细胞生物学视频成像。在三个案例研究中展示了其适用性,这些研究涉及内体中低密度脂蛋白的运输、荧光标记的腺病毒-2粒子沿微管的运动以及活细胞质膜上量子点的跟踪。当前的自动跟踪过程能够使用诸如矩缩放谱等技术对细胞生物学中的扩散过程进行量化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验