Suppr超能文献

一种用于分析体内视频显微镜下循环颗粒流动特性的自动化方法。

An automated method for analysis of flow characteristics of circulating particles from in vivo video microscopy.

作者信息

Eden Eran, Waisman Dan, Rudzsky Michael, Bitterman Haim, Brod Vera, Rivlin Ehud

机构信息

Faculty of Computer Science, The Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

IEEE Trans Med Imaging. 2005 Aug;24(8):1011-24. doi: 10.1109/TMI.2005.851759.

Abstract

The behavior of white and red blood cells, platelets, and circulating injected particles is one of the most studied areas of physiology. Most methods used to analyze the circulatory patterns of cells are time consuming. We describe a system named CellTrack, designed for fully automated tracking of circulating cells and micro-particles and retrieval of their behavioral characteristics. The task of automated blood cell tracking in vessels from in vivo video is particularly challenging because of the blood cells' nonrigid shapes, the instability inherent in in vivo videos, the abundance of moving objects and their frequent superposition. To tackle this, the CellTrack system operates on two levels: first, a global processing module extracts vessel borders and center lines based on color and temporal patterns. This enables the computation of the approximate direction of the blood flow in each vessel. Second, a local processing module extracts the locations and velocities of circulating cells. This is performed by artificial neural network classifiers that are designed to detect specific types of blood cells and micro-particles. The motion correspondence problem is then resolved by a novel algorithm that incorporates both the local and the global information. The system has been tested on a series of in vivo color video recordings of rat mesentery. Our results show that the synergy between the global and local information enables CellTrack to overcome many of the difficulties inherent in tracking methods that rely solely on local information. A comparison was made between manual measurements and the automatically extracted measurements of leukocytes and fluorescent microspheres circulatory velocities. This comparison revealed an accuracy of 97%. CellTrack also enabled a much larger volume of sampling in a fraction of time compared to the manual measurements. All these results suggest that our method can in fact constitute a reliable replacement for manual extraction of blood flow characteristics from in vivo videos.

摘要

白细胞、红细胞、血小板以及循环注射颗粒的行为是生理学中研究最多的领域之一。大多数用于分析细胞循环模式的方法都很耗时。我们描述了一种名为CellTrack的系统,该系统旨在对循环细胞和微粒进行全自动跟踪,并获取它们的行为特征。由于血细胞的非刚性形状、体内视频固有的不稳定性、运动物体的丰富性及其频繁的叠加,从体内视频中自动跟踪血管中的血细胞任务极具挑战性。为了解决这个问题,CellTrack系统在两个层面上运行:首先,一个全局处理模块基于颜色和时间模式提取血管边界和中心线。这使得能够计算每个血管中血流的大致方向。其次,一个局部处理模块提取循环细胞的位置和速度。这是由人工神经网络分类器执行的,这些分类器旨在检测特定类型的血细胞和微粒。然后,通过一种结合了局部和全局信息的新颖算法解决运动对应问题。该系统已在一系列大鼠肠系膜的体内彩色视频记录上进行了测试。我们的结果表明,全局和局部信息之间的协同作用使CellTrack能够克服许多仅依赖局部信息的跟踪方法所固有的困难。对白细胞和荧光微球循环速度的手动测量与自动提取测量进行了比较。这种比较显示准确率为97%。与手动测量相比,CellTrack还能在更短的时间内进行更大体积的采样。所有这些结果表明,我们的方法实际上可以可靠地替代从体内视频中手动提取血流特征的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验