Suppr超能文献

具有泄漏延迟和脉冲的神经网络的新稳定性准则:一种分段延迟方法。

New stability criterion of neural networks with leakage delays and impulses: a piecewise delay method.

作者信息

Kumar R Suresh, Sugumaran G, Raja R, Zhu Quanxin, Raja U Karthik

机构信息

Department of Electrical and Electronic Engineering, Anna University Regional Centre, Coimbatore, 641 047 India.

Department of Electrical and Electronic Engineering, Sri Krishna College of Engineering and Technology, Coimbatore, 641 008 India.

出版信息

Cogn Neurodyn. 2016 Feb;10(1):85-98. doi: 10.1007/s11571-015-9356-y. Epub 2015 Sep 29.

Abstract

This paper analyzes the global asymptotic stability of a class of neural networks with time delay in the leakage term and time-varying delays under impulsive perturbations. Here the time-varying delays are assumed to be piecewise. In this method, the interval of the variation is divided into two subintervals by its central point. By developing a new Lyapunov-Krasovskii functional and checking its variation in between the two subintervals, respectively, and then we present some sufficient conditions to guarantee the global asymptotic stability of the equilibrium point for the considered neural network. The proposed results which do not require the boundedness, differentiability and monotonicity of the activation functions, can be easily verified via the linear matrix inequality (LMI) control toolbox in MATLAB. Finally, a numerical example and its simulation are given to show the conditions obtained are new and less conservative than some existing ones in the literature.

摘要

本文分析了一类在泄漏项中具有时滞且在脉冲扰动下具有时变时滞的神经网络的全局渐近稳定性。这里假设时变时滞是分段的。在该方法中,变化区间通过其中心点被划分为两个子区间。通过构造一个新的Lyapunov-Krasovskii泛函,并分别检验其在两个子区间之间的变化,进而给出了一些充分条件以保证所考虑神经网络平衡点的全局渐近稳定性。所提出的结果不需要激活函数有界、可微和单调,可通过MATLAB中的线性矩阵不等式(LMI)控制工具箱轻松验证。最后,给出了一个数值例子及其仿真,以表明所得到的条件是新的,且比文献中一些现有条件保守性更低。

相似文献

1
New stability criterion of neural networks with leakage delays and impulses: a piecewise delay method.
Cogn Neurodyn. 2016 Feb;10(1):85-98. doi: 10.1007/s11571-015-9356-y. Epub 2015 Sep 29.
2
Admissible Delay Upper Bounds for Global Asymptotic Stability of Neural Networks With Time-Varying Delays.
IEEE Trans Neural Netw Learn Syst. 2018 Nov;29(11):5319-5329. doi: 10.1109/TNNLS.2018.2797279. Epub 2018 Feb 16.
3
Delay-dependent global exponential robust stability for delayed cellular neural networks with time-varying delay.
ISA Trans. 2013 Nov;52(6):711-6. doi: 10.1016/j.isatra.2013.06.011. Epub 2013 Jul 17.
4
Global asymptotic stability of complex-valued neural networks with additive time-varying delays.
Cogn Neurodyn. 2017 Jun;11(3):293-306. doi: 10.1007/s11571-017-9429-1. Epub 2017 Mar 18.
5
Global exponential stability of generalized recurrent neural networks with discrete and distributed delays.
Neural Netw. 2006 Jun;19(5):667-75. doi: 10.1016/j.neunet.2005.03.015. Epub 2005 Jul 20.
7
Mode-dependent stochastic stability criteria of fuzzy Markovian jumping neural networks with mixed delays.
ISA Trans. 2015 May;56:8-17. doi: 10.1016/j.isatra.2014.11.004. Epub 2014 Dec 12.
8
New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks.
IEEE Trans Neural Netw. 2009 Mar;20(3):533-9. doi: 10.1109/TNN.2009.2014160. Epub 2009 Feb 13.
9
Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays.
IEEE Trans Neural Netw. 2006 May;17(3):814-20. doi: 10.1109/TNN.2006.872355.
10
Delay-decomposing approach to robust stability for switched interval networks with state-dependent switching.
Cogn Neurodyn. 2014 Aug;8(4):313-26. doi: 10.1007/s11571-014-9279-z. Epub 2014 Jan 19.

引用本文的文献

1
Hamiltonian energy in a modified Hindmarsh-Rose model.
Front Netw Physiol. 2024 Mar 26;4:1362778. doi: 10.3389/fnetp.2024.1362778. eCollection 2024.
2
Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays.
Cogn Neurodyn. 2016 Dec;10(6):573-591. doi: 10.1007/s11571-016-9405-1. Epub 2016 Sep 2.
3
Passivity of memristor-based BAM neural networks with different memductance and uncertain delays.
Cogn Neurodyn. 2016 Aug;10(4):339-51. doi: 10.1007/s11571-016-9385-1. Epub 2016 Apr 27.

本文引用的文献

1
The stability of impulsive stochastic Cohen-Grossberg neural networks with mixed delays and reaction-diffusion terms.
Cogn Neurodyn. 2015 Apr;9(2):213-20. doi: 10.1007/s11571-014-9316-y. Epub 2014 Nov 4.
2
Exponential input-to-state stability of recurrent neural networks with multiple time-varying delays.
Cogn Neurodyn. 2014 Feb;8(1):47-54. doi: 10.1007/s11571-013-9258-9. Epub 2013 Jun 15.
3
A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay.
IEEE Trans Neural Netw. 2008 Mar;19(3):532-5. doi: 10.1109/TNN.2007.912593.
4
Global robust stability of bidirectional associative memory neural networks with multiple time delays.
IEEE Trans Syst Man Cybern B Cybern. 2007 Oct;37(5):1375-81. doi: 10.1109/tsmcb.2007.902244.
5
Robust anti-synchronization of a class of delayed chaotic neural networks.
Chaos. 2007 Jun;17(2):023113. doi: 10.1063/1.2731306.
6
New delay-dependent stability criteria for neural networks with time-varying delay.
IEEE Trans Neural Netw. 2007 Jan;18(1):310-4. doi: 10.1109/TNN.2006.888373.
7
Exponential stability of impulsive high-order Hopfield-type neural networks with time-varying delays.
IEEE Trans Neural Netw. 2005 Nov;16(6):1329-39. doi: 10.1109/TNN.2005.857949.
8
Global exponential stability of generalized recurrent neural networks with discrete and distributed delays.
Neural Netw. 2006 Jun;19(5):667-75. doi: 10.1016/j.neunet.2005.03.015. Epub 2005 Jul 20.
9
An analysis of exponential stability of delayed neural networks with time varying delays.
Neural Netw. 2004 Sep;17(7):1027-31. doi: 10.1016/j.neunet.2004.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验