Suppr超能文献

基于回归的数量性状基因座定位:稳健、高效且有效。

Regression-based quantitative trait loci mapping: robust, efficient and effective.

作者信息

Knott Sara A

机构信息

School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2005 Jul 29;360(1459):1435-42. doi: 10.1098/rstb.2005.1671.

Abstract

Regression has always been an important tool for quantitative geneticists. The use of maximum likelihood (ML) has been advocated for the detection of quantitative trait loci (QTL) through linkage with molecular markers, and this approach can be very effective. However, linear regression models have also been proposed which perform similarly to ML, while retaining the many beneficial features of regression and, hence, can be more tractable and versatile than ML in some circumstances. Here, the use of linear regression to detect QTL in structured outbred populations is reviewed and its perceived shortfalls are revisited. It is argued that the approach is valuable now and will remain so in the future.

摘要

回归分析一直是数量遗传学家的重要工具。通过与分子标记的连锁分析来检测数量性状基因座(QTL)时,人们提倡使用最大似然法(ML),这种方法可能非常有效。然而,也有人提出了线性回归模型,其性能与最大似然法相似,同时保留了回归分析的许多有益特性,因此在某些情况下可能比最大似然法更易于处理且用途更广。本文回顾了在结构化远交群体中使用线性回归来检测QTL的方法,并重新审视了其被认为的不足之处。本文认为该方法目前很有价值,并且在未来仍将如此。

相似文献

8
Bayesian shrinkage mapping for multiple QTL in half-sib families.贝叶斯收缩映射在半同胞家系中的多个 QTL 分析
Heredity (Edinb). 2009 Nov;103(5):368-76. doi: 10.1038/hdy.2009.71. Epub 2009 Jul 15.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验