Suppr超能文献

哺乳动物和植物基因组中核心启动子的大规模结构分析。

Large-scale structural analysis of the core promoter in mammalian and plant genomes.

作者信息

Florquin Kobe, Saeys Yvan, Degroeve Sven, Rouzé Pierre, Van de Peer Yves

机构信息

Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University Technologiepark 927, B-9052 Ghent, Belgium.

出版信息

Nucleic Acids Res. 2005 Jul 27;33(13):4255-64. doi: 10.1093/nar/gki737. Print 2005.

Abstract

DNA encodes at least two independent levels of functional information. The first level is for encoding proteins and sequence targets for DNA-binding factors, while the second one is contained in the physical and structural properties of the DNA molecule itself. Although the physical and structural properties are ultimately determined by the nucleotide sequence itself, the cell exploits these properties in a way in which the sequence itself plays no role other than to support or facilitate certain spatial structures. In this work, we focus on these structural properties, comparing them between different organisms and assessing their ability to describe the core promoter. We prove the existence of distinct types of core promoters, based on a clustering of their structural profiles. These results indicate that the structural profiles are much conserved within plants (Arabidopsis and rice) and animals (human and mouse), but differ considerably between plants and animals. Furthermore, we demonstrate that these structural profiles can be an alternative way of describing the core promoter, in addition to more classical motif or IUPAC-based approaches. Using the structural profiles as discriminatory elements to separate promoter regions from non-promoter regions, reliable models can be built to identify core-promoter regions using a strictly computational approach.

摘要

DNA编码至少两个独立层次的功能信息。第一个层次用于编码蛋白质以及DNA结合因子的序列靶点,而第二个层次包含于DNA分子本身的物理和结构特性之中。尽管物理和结构特性最终由核苷酸序列本身决定,但细胞利用这些特性的方式中,序列本身除了支持或促进某些空间结构外并无其他作用。在这项工作中,我们聚焦于这些结构特性,在不同生物体之间进行比较,并评估它们描述核心启动子的能力。基于其结构特征的聚类,我们证明了不同类型核心启动子的存在。这些结果表明,结构特征在植物(拟南芥和水稻)和动物(人类和小鼠)中高度保守,但在植物和动物之间存在显著差异。此外,我们证明,除了更经典的基于基序或国际纯粹与应用化学联合会(IUPAC)的方法外,这些结构特征可以作为描述核心启动子的另一种方式。将结构特征用作区分元件以将启动子区域与非启动子区域分开,可以构建可靠的模型,使用严格的计算方法来识别核心启动子区域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4b8/1181242/786414bd7ea9/gki737f1.jpg

相似文献

1
Large-scale structural analysis of the core promoter in mammalian and plant genomes.
Nucleic Acids Res. 2005 Jul 27;33(13):4255-64. doi: 10.1093/nar/gki737. Print 2005.
4
Prediction-based approaches to characterize bidirectional promoters in the mammalian genome.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S2. doi: 10.1186/1471-2164-9-S1-S2.
6
Genome wide analysis of Arabidopsis core promoters.
BMC Genomics. 2005 Feb 25;6:25. doi: 10.1186/1471-2164-6-25.
8
ppdb: a plant promoter database.
Nucleic Acids Res. 2008 Jan;36(Database issue):D977-81. doi: 10.1093/nar/gkm785. Epub 2007 Oct 18.
9
Genome-wide comparative analysis of putative bidirectional promoters from rice, Arabidopsis and Populus.
Gene. 2009 Jan 15;429(1-2):65-73. doi: 10.1016/j.gene.2008.09.034. Epub 2008 Oct 11.
10
Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis.
Nucleic Acids Res. 2007;35(18):6219-26. doi: 10.1093/nar/gkm685. Epub 2007 Sep 12.

引用本文的文献

2
iPro2L-DG: Hybrid network based on improved densenet and global attention mechanism for identifying promoter sequences.
Heliyon. 2024 Mar 6;10(6):e27364. doi: 10.1016/j.heliyon.2024.e27364. eCollection 2024 Mar 30.
4
Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters.
Int J Mol Sci. 2022 Sep 17;23(18):10873. doi: 10.3390/ijms231810873.
5
, a B-Box Transcription Factor Gene of Improves Salt and Drought Tolerance in .
Genes (Basel). 2021 Sep 21;12(9):1456. doi: 10.3390/genes12091456.
6
Intron exon boundary junctions in human genome have in-built unique structural and energetic signals.
Nucleic Acids Res. 2021 Mar 18;49(5):2674-2683. doi: 10.1093/nar/gkab098.
8
Toward a Universal Structural and Energetic Model for Prokaryotic Promoters.
Biophys J. 2018 Oct 2;115(7):1180-1189. doi: 10.1016/j.bpj.2018.08.002. Epub 2018 Aug 8.
9
Omni-PolyA: a method and tool for accurate recognition of Poly(A) signals in human genomic DNA.
BMC Genomics. 2017 Aug 15;18(1):620. doi: 10.1186/s12864-017-4033-7.
10
DNA structural features of eukaryotic TATA-containing and TATA-less promoters.
FEBS Open Bio. 2017 Feb 16;7(3):324-334. doi: 10.1002/2211-5463.12166. eCollection 2017 Mar.

本文引用的文献

1
2
Genome wide analysis of Arabidopsis core promoters.
BMC Genomics. 2005 Feb 25;6:25. doi: 10.1186/1471-2164-6-25.
3
Core promoter elements of eukaryotic genes have a highly distinctive mechanical property.
Nucleic Acids Res. 2004 Nov 1;32(19):5834-40. doi: 10.1093/nar/gkh905. Print 2004.
5
The RNA polymerase II transcription cycle: cycling through chromatin.
Biochim Biophys Acta. 2004 Mar 15;1677(1-3):64-73. doi: 10.1016/j.bbaexp.2003.10.012.
6
DBTSS, DataBase of Transcriptional Start Sites: progress report 2004.
Nucleic Acids Res. 2004 Jan 1;32(Database issue):D78-81. doi: 10.1093/nar/gkh076.
9
Computational approaches to identify promoters and cis-regulatory elements in plant genomes.
Plant Physiol. 2003 Jul;132(3):1162-76. doi: 10.1104/pp.102.017715.
10
RNA polymerase holoenzyme: structure, function and biological implications.
Curr Opin Microbiol. 2003 Apr;6(2):93-100. doi: 10.1016/s1369-5274(03)00036-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验