Suppr超能文献

运用图论识别公共卫生数据集中的贫困模式以及高发病率和高死亡率模式。

Use of graph theory to identify patterns of deprivation and high morbidity and mortality in public health data sets.

作者信息

Bath Peter A, Craigs Cheryl, Maheswaran Ravi, Raymond John, Willett Peter

机构信息

Centre for Health Information Management Research (CHIMR), Department of Information Studies, University of Sheffield, Western Bank, Sheffield S10 2TN UK.

出版信息

J Am Med Inform Assoc. 2005 Nov-Dec;12(6):630-41. doi: 10.1197/jamia.M1714. Epub 2005 Jul 27.

Abstract

OBJECTIVE

An important part of public health is identifying patterns of poor health and deprivation. Specific patterns of poor health may be associated with features of the geographic environment where contamination or pollution may be occurring. For example, there may be clusters of poor health surrounding nuclear power stations, whereas major roads or rivers may be associated with areas of poor health alongside the feature in chains. Current methods are limited in their capacity to search for complex patterns in geographic data sets. The objective of this study was to determine whether graph theory could be used to identify patterns of geographic areas that have high levels of deprivation, morbidity, and mortality in a public health database. The geographic areas used in the study were enumeration districts (EDs), which are the lowest level of census geography in England and Wales, representing on average 200 households in the 1991 census. More specifically, the study aimed to identify chains of EDs with high deprivation, morbidity, and mortality that might be adjacent to specific types of geographic features, i.e., rivers or major roads.

DESIGN

The maximum common subgraph (MCS) algorithm was used to search for seven query patterns of deprivation and poor health within the Trent region. Query pattern 1 represented a linear chain of five EDs and query patterns 2 to 7 represented the possible clusters of the five EDs. To identify chains of EDs with high deprivation, morbidity, and mortality, the results from the query patterns 2 to 7 were used to remove patterns (option 1) and EDs (option 2) from the results of query pattern 1.

MEASUREMENTS

Data on the Townsend Material Deprivation Index, standardized long-term limiting illness and standardized all-cause mortality rates were used for the 10,665 EDs within the Trent region.

RESULTS

The MCS algorithm retrieved a range of patterns and EDs from the database for the queries. Query pattern 1 identified 3,838 patterns containing a total of 195 EDs. When the patterns retrieved using query patterns 2 to 7 were removed from the 3,838 patterns using option 1, 1,704 patterns remained containing 161 EDs. When the EDs retrieved using query patterns 2 to 7 were removed from the 195 EDs identified by query pattern 1 using option 2, 12 EDs remained. The MCS algorithm was therefore able to reduce the numbers of patterns and EDs to allow manual examination for chains of EDs and for that which might be associated with them.

CONCLUSION

The study demonstrates the potential of the MCS algorithm for searching for specific patterns of need. This method has potential for identifying such patterns in relation to local geographic features for public health.

摘要

目的

公共卫生的一个重要部分是识别健康状况不佳和贫困的模式。特定的健康不佳模式可能与可能发生污染或污染的地理环境特征相关。例如,核电站周围可能存在健康状况不佳的聚集区,而主要道路或河流可能与沿线特征旁的健康状况不佳区域相关。当前方法在搜索地理数据集中复杂模式的能力方面存在局限。本研究的目的是确定图论是否可用于识别公共卫生数据库中贫困、发病率和死亡率水平较高的地理区域模式。本研究中使用的地理区域是枚举区(EDs),它是英格兰和威尔士人口普查地理的最低级别,在1991年人口普查中平均代表200户家庭。更具体地说,该研究旨在识别与特定类型地理特征(即河流或主要道路)相邻的、具有高贫困、发病率和死亡率的EDs链。

设计

使用最大公共子图(MCS)算法在特伦特地区搜索贫困和健康不佳的七种查询模式。查询模式1代表由五个EDs组成的线性链,查询模式2至7代表这五个EDs可能的聚类。为了识别具有高贫困、发病率和死亡率的EDs链,使用查询模式2至7的结果从查询模式1的结果中去除模式(选项1)和EDs(选项2)。

测量

使用汤森物质剥夺指数、标准化长期受限疾病和标准化全因死亡率的数据,用于特伦特地区的10,665个EDs。

结果

MCS算法从数据库中检索到一系列用于查询的模式和EDs。查询模式1识别出3,838个模式,共包含195个EDs。当使用选项1从这3,838个模式中去除使用查询模式2至7检索到的模式时,剩下1,704个模式,包含161个EDs。当使用选项2从查询模式1识别出的195个EDs中去除使用查询模式2至7检索到的EDs时,剩下12个EDs。因此,MCS算法能够减少模式和EDs的数量,以便人工检查EDs链以及可能与之相关的内容。

结论

该研究证明了MCS算法在搜索特定需求模式方面的潜力。这种方法有潜力识别与当地地理特征相关的此类模式,以用于公共卫生。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验