Adam Claudia, García-Río Luis, Leis José Ramón, Ribeiro Lara
Departamento de Química Física, Facultad de Química, Universidad de Santiago, 15782 Santiago, Spain.
J Org Chem. 2005 Aug 5;70(16):6353-61. doi: 10.1021/jo050811r.
The rate of S-nitrosocysteine decomposition in a pH range between 0.7 < pH < 13 exhibits first- and second-order dependence on total cysteine concentration. The second-order term is only observed for pH values between 6.9 < pH < 12. Both first- and second-order terms show a complex dependence on the acidity of the medium. They increase with increasing pH, reaching a maximum value around pH = 8 and then decrease with further increase in pH. An analysis of the reaction products reveals the absence of nitrite ion and ammonia. No evidence of catalysis by copper ions is observed. These results suggest the existence of a new decomposition pathway for S-nitrosocysteine, which proceeds via an intramolecular nitroso group transfer producing a primary N-nitrosamine that decomposes rapidly to give the corresponding diazonium salt. The nitroso group transfer reaction occurs intermolecularly for the decomposition pathway exhibiting a quadratic dependence on cysteine concentration. Both nitroso group transfer pathways are subject to acid catalysis by cysteine. Kinetic results indicate that the extent of S...NO bond cleavage in the transition state is ahead of protonation of the AH...S sulfur atom. The results obtained show the existence of a new decomposition pathway for the S-nitrosocysteine where NO is not released, and hence, it has a significant biological impact due to the potential use of nitrosothiols as NO donors.
在0.7 < pH < 13的pH范围内,S-亚硝基半胱氨酸的分解速率对总半胱氨酸浓度呈现一级和二级依赖性。二级项仅在6.9 < pH < 12的pH值范围内观察到。一级和二级项均对介质酸度呈现复杂的依赖性。它们随pH升高而增加,在pH = 8左右达到最大值,然后随pH进一步升高而降低。对反应产物的分析表明不存在亚硝酸根离子和氨。未观察到铜离子催化的证据。这些结果表明存在一种新的S-亚硝基半胱氨酸分解途径,该途径通过分子内亚硝基基团转移进行,生成一种伯N-亚硝胺,该亚硝胺迅速分解生成相应的重氮盐。对于对半胱氨酸浓度呈现二次依赖性的分解途径,亚硝基基团转移反应发生在分子间。两种亚硝基基团转移途径均受到半胱氨酸的酸催化。动力学结果表明,过渡态中S...NO键的断裂程度先于AH...S硫原子的质子化。所获得的结果表明存在一种新的S-亚硝基半胱氨酸分解途径,其中不会释放NO,因此,由于亚硝基硫醇作为NO供体的潜在用途,它具有重大的生物学影响。