Department of Chemistry and Biochemistry, Concordia University, Montreal, Québec, Canada.
J Phys Chem B. 2011 Mar 31;115(12):3112-26. doi: 10.1021/jp1035597. Epub 2011 Mar 8.
The denitrosation of three primary S-nitrosothiols (RSNO; S-nitrosocysteine, S-nitroso-N-acetylcysteine, and S-nitrosoglutathione) and two tertiary RSNOs (S-nitrosopenicillamine and S-nitroso-N-acetylpenicillamine) was investigated in 3.75 M H(2)SO(4) to probe the mechanism of acid-catalyzed RSNO hydrolysis and its dependence on RSNO structure. This reversible reaction was forced to proceed in the denitrosation direction by trapping the nitrosating agent with HN(3). The primary RSNOs exhibited hydrolysis k(obs) values of ∼2 × 10(-4) s(-1), and the tertiary RSNO k(obs) values were an order of magnitude higher. Product analysis by HPLC revealed that the parent thiols (RSHs) were formed in 90-100% yield on 79-99% RSNO denitrosation. Possible hydrolysis mechanisms were studied computationally at the CBS-QB3 level using S-nitrosomethanethiol (MeSNO) as a model RSNO. Consideration of RSNOs as a combination of conventional R-S-N═O, zwitterionic R-S(+)═N-O(-), and RS(-)/NO(+) ion-pair resonance structures was key in understanding the mechanistic details of acid-catalyzed hydrolysis. Protonation of the S-nitroso oxygen or nitrogen activates the sulfur and nucleophilic attack by H(2)O at this atom leads to the formation of the sulfoxide-protonated N-hydroxysulfinamide, MeS(+)(OH)NHOH, with barriers of 19 and 29 kcal/mol, respectively. Proton loss and reprotonation at the nitrogen lead to secondary hydrolysis that produces the sulfinic acid MeS(═O)OH and NH(2)OH. Notably, no low-energy RSNO hydrolysis pathway for HNO release was found in the computational analysis. Protonation of the S-nitroso sulfur gives rise to NO(+) release with a low activation barrier (ΔH(double dagger)(calc) ≈ 6 kcal/mol) and the formation of MeSH in agreement with experiment. The experimental k(obs) can be expressed as K(a)k(1), where K(a) is the acid dissociation constant for protonation of the S-nitroso sulfur and k(1) the pseudo-first-order hydrolysis rate constant. Given the low ΔH(double dagger)(calc) for denitrosation of the S-protonated isomer, the observed slow rates of acid-catalyzed RSNO hydrolysis must be controlled by the magnitude of K(a). The 10-fold higher K(a) calculated for Me(3)CS(H(+))NO (∼10(-15)) compared to MeS(H(+))NO (10(-16)) is consistent with the order of magnitude larger k(obs) reported here for the tertiary vs primary RSNOs.
研究了三种主要的 S-亚硝硫醇(RSNO;S-亚硝基半胱氨酸、S-亚硝基-N-乙酰半胱氨酸和 S-亚硝基谷胱甘肽)和两种叔 S-亚硝硫醇(S-亚硝基青霉胺和 S-亚硝基-N-乙酰青霉胺)在 3.75 M H(2)SO(4)中的脱硝反应,以探究酸催化的 RSNO 水解机制及其对 RSNO 结构的依赖性。通过用 HN(3)捕获硝化剂,将该可逆反应强制朝着脱硝方向进行。初级 RSNO 的水解观测速率常数(k(obs))值约为 2×10(-4) s(-1),而叔 RSNO 的 k(obs)值则高一个数量级。通过 HPLC 进行的产物分析表明,在 79-99%的 RSNO 脱硝反应中,母体硫醇(RSHs)以 90-100%的产率形成。在 CBS-QB3 水平上使用 S-亚硝甲烷硫醇(MeSNO)作为模型 RSNO 进行了可能的水解机制的计算研究。将 RSNO 视为常规 R-S-N═O、两性离子 R-S(+)═N-O(-)和 RS(-)/NO(+)离子对共振结构的组合,是理解酸催化水解的机制细节的关键。S-亚硝基氧或氮的质子化使硫原子活化,亲核进攻由 H(2)O 在该原子上进行,导致形成亚砜-质子化 N-羟磺酰胺 MeS(+)(OH)NHOH,其能垒分别为 19 和 29 kcal/mol。氮上质子的丢失和重新质子化导致了二次水解,生成亚磺酸 MeS(═O)OH 和 NH(2)OH。值得注意的是,在计算分析中没有发现用于 HNO 释放的低能 RSNO 水解途径。S-亚硝基硫的质子化导致 NO(+)释放,其活化势垒(ΔH(double dagger)(calc)≈6 kcal/mol)较低,与实验一致,生成 MeSH。实验观测到的 k(obs)可以表示为 K(a)k(1),其中 K(a)是 S-亚硝基硫质子化的酸离解常数,k(1)是假一级水解速率常数。鉴于 S-质子化异构体脱硝的低ΔH(double dagger)(calc),酸催化 RSNO 水解的观察到的缓慢速率必须由 K(a)的大小控制。与 MeS(H(+))NO(10(-16))相比,Me(3)CS(H(+))NO 的计算出的 10 倍更高的 K(a)(约 10(-15))与这里报道的叔 RSNO 对初级 RSNO 更大的 k(obs)一致。