Tompa Peter, Szász Csilla, Buday László
Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, 29 Karolina Street, 1113 Budapest, Hungary.
Trends Biochem Sci. 2005 Sep;30(9):484-9. doi: 10.1016/j.tibs.2005.07.008.
A basic mechanism by which individual proteins can increase network complexity is moonlighting, whereby a given protein fulfils more than one function. Traditionally, this phenomenon is attributed to separate binding surfaces of globular, folded proteins but we suggest that intrinsically unstructured proteins (IUPs) might provide radically different mechanisms. Eleven IUPs have been identified that suggest that the structural malleability of IUPs gives rise to unprecedented cases of moonlighting by eliciting opposing (inhibiting and activating) action on different partners or even the same partner molecule. Unlike classical cases, these proteins use the same region or overlapping interaction surfaces to exert distinct effects and employ non-conventional mechanisms to switch function, enabled by their capacity to adopt different conformations upon binding. Owing to the apparent functional benefits, we expect to see many more examples of this parsimonious use of protein material in complex metabolic networks.
单个蛋白质增加网络复杂性的一种基本机制是兼职,即一种特定的蛋白质履行不止一种功能。传统上,这种现象归因于球状折叠蛋白质的不同结合表面,但我们认为内在无序蛋白质(IUPs)可能提供截然不同的机制。已鉴定出11种内在无序蛋白质,这表明内在无序蛋白质的结构可塑性通过对不同伙伴甚至同一伙伴分子产生相反(抑制和激活)作用,引发了前所未有的兼职情况。与经典情况不同,这些蛋白质利用相同区域或重叠的相互作用表面发挥不同作用,并采用非常规机制来切换功能,这得益于它们在结合时能够采用不同构象的能力。由于明显的功能优势,我们预计在复杂的代谢网络中会看到更多这种对蛋白质材料的简约利用的例子。