Suppr超能文献

凝缩蛋白在酿酒酵母基因组中不同且特定的染色体位点上的结合。

Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome.

作者信息

Wang Bi-Dar, Eyre David, Basrai Munira, Lichten Michael, Strunnikov Alexander

机构信息

Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Cancer Institute, Bethesda, MD 20892, USA.

出版信息

Mol Cell Biol. 2005 Aug;25(16):7216-25. doi: 10.1128/MCB.25.16.7216-7225.2005.

Abstract

Mitotic chromosome condensation is chiefly driven by the condensin complex. The specific recognition (targeting) of chromosomal sites by condensin is an important component of its in vivo activity. We previously identified the rRNA gene cluster in Saccharomyces cerevisiae as an important condensin-binding site, but both genetic and cell biology data suggested that condensin also acts elsewhere. In order to characterize the genomic distribution of condensin-binding sites and to assess the specificity of condensin targeting, we analyzed condensin-bound sites using chromatin immunoprecipitation and hybridization to whole-genome microarrays. The genomic condensin-binding map shows preferential binding sites over the length of every chromosome. This analysis and quantitative PCR validation confirmed condensin-occupied sites across the genome and in the specialized chromatin regions: near centromeres and telomeres and in heterochromatic regions. Condensin sites were also enriched in the zones of converging DNA replication. Comparison of condensin binding in cells arrested in G(1) and mitosis revealed a cell cycle dependence of condensin binding at some sites. In mitotic cells, condensin was depleted at some sites while enriched at rRNA gene cluster, subtelomeric, and pericentromeric regions.

摘要

有丝分裂染色体凝聚主要由凝聚素复合物驱动。凝聚素对染色体位点的特异性识别(靶向作用)是其体内活性的重要组成部分。我们之前在酿酒酵母中鉴定出rRNA基因簇是一个重要的凝聚素结合位点,但遗传和细胞生物学数据均表明凝聚素在其他地方也发挥作用。为了描述凝聚素结合位点的基因组分布并评估凝聚素靶向作用的特异性,我们使用染色质免疫沉淀和全基因组微阵列杂交分析了凝聚素结合位点。基因组凝聚素结合图谱显示在每条染色体的全长上都有优先结合位点。该分析和定量PCR验证证实了全基因组以及在特殊染色质区域(着丝粒和端粒附近以及异染色质区域)存在凝聚素占据的位点。凝聚素位点在DNA复制汇合区域也有富集。比较处于G1期和有丝分裂期停滞的细胞中的凝聚素结合情况,发现凝聚素在某些位点的结合存在细胞周期依赖性。在有丝分裂细胞中,凝聚素在某些位点减少,而在rRNA基因簇、亚端粒和着丝粒周围区域富集。

相似文献

1
Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome.
Mol Cell Biol. 2005 Aug;25(16):7216-25. doi: 10.1128/MCB.25.16.7216-7225.2005.
3
Cti1/C1D interacts with condensin SMC hinge and supports the DNA repair function of condensin.
Proc Natl Acad Sci U S A. 2004 May 25;101(21):8078-83. doi: 10.1073/pnas.0307976101. Epub 2004 May 17.
4
Cell cycle-dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae.
J Struct Biol. 2008 May;162(2):248-59. doi: 10.1016/j.jsb.2008.01.002. Epub 2008 Jan 11.
5
Analysis of the role of Aurora B on the chromosomal targeting of condensin I.
Nucleic Acids Res. 2007;35(7):2403-12. doi: 10.1093/nar/gkm157. Epub 2007 Mar 28.
6
The cis element and factors required for condensin recruitment to chromosomes.
Mol Cell. 2009 Apr 10;34(1):26-35. doi: 10.1016/j.molcel.2009.02.021.
7
8
Condensin is required for chromosome arm cohesion during mitosis.
Genes Dev. 2006 Nov 1;20(21):2973-84. doi: 10.1101/gad.1468806.
9
The condensin complex governs chromosome condensation and mitotic transmission of rDNA.
J Cell Biol. 2000 May 15;149(4):811-24. doi: 10.1083/jcb.149.4.811.

引用本文的文献

1
Condensin Accelerates Long-Range Intra-Chromosomal Interactions.
bioRxiv. 2025 May 3:2025.05.02.651983. doi: 10.1101/2025.05.02.651983.
2
Crossover designation recruits condensin to reorganize the meiotic chromosome axis.
bioRxiv. 2025 Mar 11:2020.07.16.207068. doi: 10.1101/2020.07.16.207068.
3
Cytoophidium complexes resonate with cell fates.
Cell Mol Life Sci. 2025 Jan 21;82(1):54. doi: 10.1007/s00018-025-05578-z.
5
Condensin pinches a short negatively supercoiled DNA loop during each round of ATP usage.
EMBO J. 2023 Feb 1;42(3):e111913. doi: 10.15252/embj.2022111913. Epub 2022 Dec 19.
6
Quiescence in .
Annu Rev Genet. 2022 Nov 30;56:253-278. doi: 10.1146/annurev-genet-080320-023632.
7
The yeast 2-micron plasmid Rep2 protein has Rep1-independent partitioning function.
Nucleic Acids Res. 2022 Oct 14;50(18):10571-10585. doi: 10.1093/nar/gkac810.
8
The selfish yeast plasmid utilizes the condensin complex and condensed chromatin for faithful partitioning.
PLoS Genet. 2021 Jul 16;17(7):e1009660. doi: 10.1371/journal.pgen.1009660. eCollection 2021 Jul.
9
A role for condensin in mediating transcriptional adaptation to environmental stimuli.
Life Sci Alliance. 2021 Jun 3;4(7). doi: 10.26508/lsa.202000961. Print 2021 Jul.
10
Condensin minimizes topoisomerase II-mediated entanglements of DNA in vivo.
EMBO J. 2021 Jan 4;40(1):e105393. doi: 10.15252/embj.2020105393. Epub 2020 Nov 6.

本文引用的文献

1
Condensin restructures chromosomes in preparation for meiotic divisions.
J Cell Biol. 2004 Nov 22;167(4):613-25. doi: 10.1083/jcb.200408061.
2
Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae.
PLoS Biol. 2004 Sep;2(9):E259. doi: 10.1371/journal.pbio.0020259. Epub 2004 Jul 27.
3
The kinetochore is an enhancer of pericentric cohesin binding.
PLoS Biol. 2004 Sep;2(9):E260. doi: 10.1371/journal.pbio.0020260. Epub 2004 Jul 27.
4
Cohesin relocation from sites of chromosomal loading to places of convergent transcription.
Nature. 2004 Jul 29;430(6999):573-8. doi: 10.1038/nature02742. Epub 2004 Jun 30.
6
Mapping global histone acetylation patterns to gene expression.
Cell. 2004 Jun 11;117(6):721-33. doi: 10.1016/j.cell.2004.05.023.
7
Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells.
Mol Biol Cell. 2004 Jul;15(7):3296-308. doi: 10.1091/mbc.e04-03-0242. Epub 2004 May 14.
8
Kinetochore sub-structure comes to MIND.
Nat Cell Biol. 2004 Feb;6(2):94-5. doi: 10.1038/ncb0204-94.
9
Chromosome shaping by two condensins.
Cell Cycle. 2004 Jan;3(1):26-8.
10
The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork.
Mol Cell Biol. 2003 Dec;23(24):9178-88. doi: 10.1128/MCB.23.24.9178-9188.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验