Suppr超能文献

黏连蛋白从染色体加载位点重新定位到转录汇聚位点。

Cohesin relocation from sites of chromosomal loading to places of convergent transcription.

作者信息

Lengronne Armelle, Katou Yuki, Mori Saori, Yokobayashi Shihori, Kelly Gavin P, Itoh Takehiko, Watanabe Yoshinori, Shirahige Katsuhiko, Uhlmann Frank

机构信息

Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.

出版信息

Nature. 2004 Jul 29;430(6999):573-8. doi: 10.1038/nature02742. Epub 2004 Jun 30.

Abstract

Sister chromatids, the products of eukaryotic DNA replication, are held together by the chromosomal cohesin complex after their synthesis. This allows the spindle in mitosis to recognize pairs of replication products for segregation into opposite directions. Cohesin forms large protein rings that may bind DNA strands by encircling them, but the characterization of cohesin binding to chromosomes in vivo has remained vague. We have performed high resolution analysis of cohesin association along budding yeast chromosomes III-VI. Cohesin localizes almost exclusively between genes that are transcribed in converging directions. We find that active transcription positions cohesin at these sites, not the underlying DNA sequence. Cohesin is initially loaded onto chromosomes at separate places, marked by the Scc2/Scc4 cohesin loading complex, from where it appears to slide to its more permanent locations. But even after sister chromatid cohesion is established, changes in transcription lead to repositioning of cohesin. Thus the sites of cohesin binding and therefore probably sister chromatid cohesion, a key architectural feature of mitotic chromosomes, display surprising flexibility. Cohesin localization to places of convergent transcription is conserved in fission yeast, suggesting that it is a common feature of eukaryotic chromosomes.

摘要

姐妹染色单体是真核生物DNA复制的产物,在合成后由染色体黏连蛋白复合体维系在一起。这使得有丝分裂中的纺锤体能够识别复制产物对,以便向相反方向分离。黏连蛋白形成大的蛋白质环,可能通过环绕DNA链来结合它们,但黏连蛋白在体内与染色体结合的特征仍不明确。我们对芽殖酵母III - VI号染色体上黏连蛋白的结合进行了高分辨率分析。黏连蛋白几乎只定位在沿相反方向转录的基因之间。我们发现,是活跃转录将黏连蛋白定位在这些位点,而非潜在的DNA序列。黏连蛋白最初在由Scc2/Scc4黏连蛋白装载复合体标记的不同位置加载到染色体上,然后似乎从这些位置滑动到其更稳定的位置。但即使在建立姐妹染色单体黏连之后,转录的变化也会导致黏连蛋白重新定位。因此,黏连蛋白的结合位点,进而可能还有姐妹染色单体黏连(有丝分裂染色体的一个关键结构特征),表现出惊人的灵活性。黏连蛋白在裂殖酵母中定位到转录方向相反的位置这一现象是保守的,表明这是真核生物染色体的一个共同特征。

相似文献

1
Cohesin relocation from sites of chromosomal loading to places of convergent transcription.
Nature. 2004 Jul 29;430(6999):573-8. doi: 10.1038/nature02742. Epub 2004 Jun 30.
2
Evidence for cohesin sliding along budding yeast chromosomes.
Open Biol. 2016 Jun;6(6). doi: 10.1098/rsob.150178.
4
The acetyltransferase Eco1 elicits cohesin dimerization during S phase.
J Biol Chem. 2020 May 29;295(22):7554-7565. doi: 10.1074/jbc.RA120.013102. Epub 2020 Apr 20.
5
Transcription facilitates sister chromatid cohesion on chromosomal arms.
Nucleic Acids Res. 2016 Aug 19;44(14):6676-92. doi: 10.1093/nar/gkw252. Epub 2016 Apr 15.
6
Molecular biology: cohesins slip sliding away.
Nature. 2004 Jul 29;430(6999):520-1. doi: 10.1038/430520b.
7
Mediator recruits the cohesin loader Scc2 to RNA Pol II-transcribed genes and promotes sister chromatid cohesion.
Curr Biol. 2022 Jul 11;32(13):2884-2896.e6. doi: 10.1016/j.cub.2022.05.019. Epub 2022 Jun 1.
8
Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins.
Mol Cell. 2000 Feb;5(2):243-54. doi: 10.1016/s1097-2765(00)80420-7.
9
Biochemical reconstitution of topological DNA binding by the cohesin ring.
Nature. 2014 Jan 16;505(7483):367-71. doi: 10.1038/nature12867. Epub 2013 Dec 1.
10
Transcription alters chromosomal locations of cohesin in Saccharomyces cerevisiae.
Mol Cell Biol. 2007 Dec;27(24):8522-32. doi: 10.1128/MCB.01007-07. Epub 2007 Oct 8.

引用本文的文献

2
Hypothesis that ancestral eukaryotes sexually proliferated without kinetochores or mitosis.
J Cell Sci. 2025 Jun 1;138(11). doi: 10.1242/jcs.263843. Epub 2025 Jun 10.
3
High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion.
Nat Commun. 2025 May 15;16(1):4506. doi: 10.1038/s41467-025-57775-w.
4
Regulation of pericentromeric DNA loop size via Scc2-cohesin interaction.
iScience. 2025 Mar 30;28(5):112322. doi: 10.1016/j.isci.2025.112322. eCollection 2025 May 16.
5
Cohesin organizes 3D DNA contacts surrounding active enhancers in .
Genome Res. 2025 May 2;35(5):1108-1123. doi: 10.1101/gr.279365.124.
8

本文引用的文献

1
ATP hydrolysis is required for cohesin's association with chromosomes.
Curr Biol. 2003 Nov 11;13(22):1941-53. doi: 10.1016/j.cub.2003.10.036.
2
A model for ATP hydrolysis-dependent binding of cohesin to DNA.
Curr Biol. 2003 Nov 11;13(22):1930-40. doi: 10.1016/j.cub.2003.10.030.
3
S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex.
Nature. 2003 Aug 28;424(6952):1078-83. doi: 10.1038/nature01900.
4
Chromosome cohesion and separation: from men and molecules.
Curr Biol. 2003 Feb 4;13(3):R104-14. doi: 10.1016/s0960-9822(03)00039-3.
5
Structure, function and DNA composition of Saccharomyces cerevisiae chromatin loops.
Gene. 2002 Oct 30;300(1-2):63-8. doi: 10.1016/s0378-1119(02)00848-x.
6
A chromatin remodelling complex that loads cohesin onto human chromosomes.
Nature. 2002 Aug 29;418(6901):994-8. doi: 10.1038/nature01024.
7
Molecular architecture of SMC proteins and the yeast cohesin complex.
Mol Cell. 2002 Apr;9(4):773-88. doi: 10.1016/s1097-2765(02)00515-4.
10
Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast.
Nat Cell Biol. 2002 Jan;4(1):89-93. doi: 10.1038/ncb739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验