Suppr超能文献

基于贝叶斯正则化神经网络筛选黄酮类化合物作为P-糖蛋白抑制剂的计算机模拟方法。

An in silico approach for screening flavonoids as P-glycoprotein inhibitors based on a Bayesian-regularized neural network.

作者信息

Wang Yong-Hua, Li Yan, Yang Sheng-Li, Yang Ling

机构信息

Laboratory of Pharmaceutical Resource Discovery Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, No. 457 Zhongshan Road, 116023, Dalian, China.

出版信息

J Comput Aided Mol Des. 2005 Mar;19(3):137-47. doi: 10.1007/s10822-005-3321-5.

Abstract

P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146+/-0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p=0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.

摘要

P-糖蛋白(P-gp)是一种ATP结合盒(ABC)转运蛋白,通过将细胞毒性药物排出细胞发挥生物屏障作用,这在癌症化疗中形成了障碍。为了助力潜在P-gp抑制剂的开发,我们基于贝叶斯正则化神经网络(BRNN)构建了黄酮类化合物作为P-gp抑制剂的定量构效关系(QSAR)模型。从文献中收集了57种与小鼠P-gp C末端核苷酸结合域结合的黄酮类化合物数据集。使用独立于训练集的测试集评估模型的预测能力,结果显示预测标准误差为0.146±0.006(数据缩放到0至1)。同时,还尝试使用另外两种数学工具,即反向传播神经网络(BPNN)和偏最小二乘法(PLS)构建QSAR模型。与BPNN相比,BRNN为测试集提供的结果略好,但根据p = 0.05时的F统计量,差异不显著。在本研究中,PLS未能构建可靠的模型。我们的研究表明,基于BRNN的计算机模拟模型在促进P-gp黄酮类抑制剂的预测方面具有良好潜力,可能应用于进一步的药物设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验