Karelson Mati, Dobchev Dimitar A, Kulshyn Oleksandr V, Katritzky Alan R
Department of Chemistry, University of Tartu, 2 Jakobi Street, Tartu 51014, Estonia.
J Chem Inf Model. 2006 Sep-Oct;46(5):1891-7. doi: 10.1021/ci0600206.
An investigation of the neural network convergence and prediction based on three optimization algorithms, namely, Levenberg-Marquardt, conjugate gradient, and delta rule, is described. Several simulated neural networks built using the above three algorithms indicated that the Levenberg-Marquardt optimizer implemented as a back-propagation neural network converged faster than the other two algorithms and provides in most of the cases better prediction. These conclusions are based on eight physicochemical data sets, each with a significant number of compounds comparable to that usually used in the QSAR/QSPR modeling. The superiority of the Levenberg-Marquardt algorithm is revealed in terms of functional dependence of the change of the neural network weights with respect to the gradient of the error propagation as well as distribution of the weight values. The prediction of the models is assessed by the error of the validation sets not used in the training process.
本文描述了基于三种优化算法,即Levenberg-Marquardt算法、共轭梯度算法和delta规则,对神经网络收敛性和预测能力的研究。使用上述三种算法构建的多个模拟神经网络表明,作为反向传播神经网络实现的Levenberg-Marquardt优化器比其他两种算法收敛更快,并且在大多数情况下能提供更好的预测。这些结论基于八个物理化学数据集,每个数据集都有大量与QSAR/QSPR建模中通常使用的化合物数量相当的化合物。Levenberg-Marquardt算法的优越性体现在神经网络权重变化相对于误差传播梯度的函数依赖性以及权重值的分布方面。通过训练过程中未使用的验证集的误差来评估模型的预测能力。