Suppr超能文献

果蝇经昆虫病原性假单胞菌属物种口腔感染后的宿主防御反应。

Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species.

作者信息

Vodovar Nicolas, Vinals Marisa, Liehl Peter, Basset Alan, Degrouard Jeril, Spellman Paul, Boccard Frédéric, Lemaitre Bruno

机构信息

Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.

出版信息

Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11414-9. doi: 10.1073/pnas.0502240102. Epub 2005 Aug 1.

Abstract

Drosophila has been shown to be a valuable model for the investigation of host-pathogen interactions. Study of the Drosophila immune response has been hampered, however, by the lack of true Drosophila pathogens. In nearly all studies reported, the bacteria used were directly injected within the body cavity of the insect, bypassing the initial steps of a natural interaction. Here, we report the identification of a previously uncharacterized bacterial species, Pseudomonas entomophila (Pe), which has the capacity to induce the systemic expression of antimicrobial peptide genes in Drosophila after ingestion. In contrast to previously identified bacteria, Pe is highly pathogenic to both Drosophila larvae and adults, and its persistence in larvae leads to a massive destruction of gut cells. Using this strain, we have analyzed the modulation of the larval transcriptome upon bacterial infection. We found that natural infection by Pe induces a dramatic change in larval gene expression. In addition to immunity genes, our study identifies many genes associated with Pe pathogenesis that have been previously unreported.

摘要

果蝇已被证明是研究宿主-病原体相互作用的宝贵模型。然而,由于缺乏真正的果蝇病原体,果蝇免疫反应的研究受到了阻碍。在几乎所有报道的研究中,所使用的细菌都是直接注射到昆虫的体腔内,绕过了自然相互作用的初始步骤。在此,我们报告鉴定出一种以前未被表征的细菌物种,嗜虫假单胞菌(Pe),它在被果蝇摄入后能够诱导果蝇体内抗菌肽基因的系统性表达。与先前鉴定的细菌不同,Pe对果蝇幼虫和成虫都具有高度致病性,并且它在幼虫体内的持续存在会导致肠道细胞的大量破坏。利用这种菌株,我们分析了细菌感染后幼虫转录组的调控情况。我们发现,Pe的自然感染会引起幼虫基因表达的显著变化。除了免疫基因外,我们的研究还鉴定出许多与Pe致病机制相关的基因,这些基因以前未曾报道过。

相似文献

1
Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11414-9. doi: 10.1073/pnas.0502240102. Epub 2005 Aug 1.
2
Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model.
PLoS Pathog. 2006 Jun;2(6):e56. doi: 10.1371/journal.ppat.0020056. Epub 2006 Jun 9.
3
Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2.
PLoS Pathog. 2006 Feb;2(2):e14. doi: 10.1371/journal.ppat.0020014. Epub 2006 Feb 24.
4
Immune genes and divergent antimicrobial peptides in flies of the subgenus Drosophila.
BMC Evol Biol. 2016 Oct 24;16(1):228. doi: 10.1186/s12862-016-0805-y.
6
A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence.
Cell Microbiol. 2010 Nov;12(11):1666-79. doi: 10.1111/j.1462-5822.2010.01501.x. Epub 2010 Aug 17.
10
CHD1 contributes to intestinal resistance against infection by P. aeruginosa in Drosophila melanogaster.
PLoS One. 2012;7(8):e43144. doi: 10.1371/journal.pone.0043144. Epub 2012 Aug 13.

引用本文的文献

1
Diacylglycerol metabolism drives host-pathogen responses during enteric infection in .
bioRxiv. 2025 Sep 2:2025.08.28.672769. doi: 10.1101/2025.08.28.672769.
2
Identification of an strain as a new mosquito pathogen.
Front Cell Infect Microbiol. 2025 Aug 12;15:1649545. doi: 10.3389/fcimb.2025.1649545. eCollection 2025.
3
A novel intracellular signaling pathway elicited by DM9CP-6 regulates immune responses in oysters.
Cell Commun Signal. 2025 Aug 26;23(1):383. doi: 10.1186/s12964-025-02389-4.
4
Standard ingredient of medium reduces transmission and virulence of the gut pathogen .
Microbiol Spectr. 2025 Sep 2;13(9):e0306524. doi: 10.1128/spectrum.03065-24. Epub 2025 Aug 12.
5
Polyploidy promotes transformation of epithelial cells into nonprofessional phagocytes.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2427293122. doi: 10.1073/pnas.2427293122. Epub 2025 Jul 22.
7
Drosophila attraction, colonization, contagion, and mortality by Pseudomonas spp. and toxicity of their biosurfactants.
Appl Microbiol Biotechnol. 2025 Jun 4;109(1):135. doi: 10.1007/s00253-025-13518-x.
9
Chondroitin sulfate regulates proliferation of Drosophila intestinal stem cells.
PLoS Genet. 2025 May 9;21(5):e1011686. doi: 10.1371/journal.pgen.1011686. eCollection 2025 May.
10
The Role of Vulture (Accipitriformes) Cutaneous Microbiota in Infectious Disease Protection.
Microorganisms. 2025 Apr 14;13(4):898. doi: 10.3390/microorganisms13040898.

本文引用的文献

1
An antioxidant system required for host protection against gut infection in Drosophila.
Dev Cell. 2005 Jan;8(1):125-32. doi: 10.1016/j.devcel.2004.11.007.
2
Invertebrates as a source of emerging human pathogens.
Nat Rev Microbiol. 2004 Oct;2(10):833-41. doi: 10.1038/nrmicro1008.
3
Drosophila: a polyvalent model to decipher host-pathogen interactions.
Trends Microbiol. 2004 May;12(5):235-42. doi: 10.1016/j.tim.2004.03.007.
4
Conservation of the response regulator gene gacA in Pseudomonas species.
Environ Microbiol. 2003 Dec;5(12):1328-40. doi: 10.1111/j.1462-2920.2003.00438.x.
5
Immune activation of NF-kappaB and JNK requires Drosophila TAK1.
J Biol Chem. 2003 Dec 5;278(49):48928-34. doi: 10.1074/jbc.M304802200. Epub 2003 Sep 30.
10
A scavenger function for a Drosophila peptidoglycan recognition protein.
J Biol Chem. 2003 Feb 28;278(9):7059-64. doi: 10.1074/jbc.M208900200. Epub 2002 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验