Suppr超能文献

果蝇的Toll信号通路参与对革兰氏阴性人类病原体铜绿假单胞菌感染的抗性反应。

The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa.

作者信息

Lau Gee W, Goumnerov Boyan C, Walendziewicz Cynthia L, Hewitson Jennifer, Xiao Wenzhong, Mahajan-Miklos Shalina, Tompkins Ronald G, Perkins Lizabeth A, Rahme Laurence G

机构信息

Department of Surgery, Harvard Medical School and Massachusetts General Hospital and Shriners Burns Institute, Boston, Massachusetts 02114, USA.

出版信息

Infect Immun. 2003 Jul;71(7):4059-66. doi: 10.1128/IAI.71.7.4059-4066.2003.

Abstract

Pseudomonas aeruginosa is a gram-negative pathogen that infects immunocompromised and cystic fibrosis patients. The molecular basis of the host-P. aeruginosa interaction and the effect of specific P. aeruginosa virulence factors on various components of the innate immunity pathways are largely unknown. We examine interactions between P. aeruginosa virulence factors and components of innate immunity response in the Drosophila melanogaster model system to reveal the importance of the Toll signaling pathway in resistance to infection by the P. aeruginosa human isolate PA14. Using the two PA14-isogenic mutants plcS and dsbA, we show that Drosophila loss-of-function mutants of Spatzle, the extracellular ligand of Toll, and Dorsal and Dif, two NF-kappa B-like transcription factors, allow increased P. aeruginosa infectivity within fly tissues. In contrast, a constitutively active Toll mutant and a loss-of-function mutant of Cactus, an I kappa B-like factor that inhibits the Toll signaling, reduce infectivity. Our finding that Dorsal activity is required to restrict P. aeruginosa infectivity in Drosophila provides direct in vivo evidence for Dorsal function in adult fly immunity. Additionally, our results provide the basis for future studies into interactions between P. aeruginosa virulence factors and components of the Toll signaling pathway, which is functionally conserved between flies and humans.

摘要

铜绿假单胞菌是一种革兰氏阴性病原体,可感染免疫功能低下的患者和囊性纤维化患者。宿主与铜绿假单胞菌相互作用的分子基础以及特定铜绿假单胞菌毒力因子对固有免疫途径各组分的影响在很大程度上尚不清楚。我们在果蝇模型系统中研究铜绿假单胞菌毒力因子与固有免疫反应组分之间的相互作用,以揭示Toll信号通路在抵抗铜绿假单胞菌人分离株PA14感染中的重要性。使用两个PA14同基因突变体plcS和dsbA,我们发现,Toll的细胞外配体Spatzle以及两个NF-κB样转录因子Dorsal和Dif的果蝇功能缺失突变体,会使果蝇组织内铜绿假单胞菌的感染性增加。相反,一个组成型激活的Toll突变体和一个抑制Toll信号的IκB样因子Cactus的功能缺失突变体,则会降低感染性。我们的发现表明,Dorsal活性是限制果蝇体内铜绿假单胞菌感染性所必需的,这为Dorsal在成年果蝇免疫中的功能提供了直接的体内证据。此外,我们的结果为未来研究铜绿假单胞菌毒力因子与Toll信号通路组分之间的相互作用奠定了基础,该信号通路在果蝇和人类之间具有功能保守性。

相似文献

2
Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression.
Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2573-8. doi: 10.1073/pnas.0409588102. Epub 2005 Feb 4.
3
Pseudomonas aeruginosa RhlR is required to neutralize the cellular immune response in a Drosophila melanogaster oral infection model.
Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17378-83. doi: 10.1073/pnas.1114907108. Epub 2011 Oct 10.
6
Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo.
PLoS Pathog. 2011 Oct;7(10):e1002299. doi: 10.1371/journal.ppat.1002299. Epub 2011 Oct 6.
7
Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection.
Nat Protoc. 2009;4(9):1285-94. doi: 10.1038/nprot.2009.124. Epub 2009 Aug 13.
8
Immune surveillance mechanisms of the skin against the stealth infection strategy of Pseudomonas aeruginosa-review.
Comp Immunol Microbiol Infect Dis. 2013 Sep;36(5):433-48. doi: 10.1016/j.cimid.2013.03.003. Epub 2013 Apr 17.
9
Massively parallel mutant selection identifies genetic determinants of colonization of .
mSystems. 2024 Mar 19;9(3):e0131723. doi: 10.1128/msystems.01317-23. Epub 2024 Feb 21.

引用本文的文献

1
From Bones to Bugs: Structure-Based Development of Raloxifene-Derived Pathoblockers That Inhibit Pyocyanin Production in .
J Med Chem. 2025 Apr 10;68(7):7390-7420. doi: 10.1021/acs.jmedchem.4c03065. Epub 2025 Mar 29.
3
Identification of immunity-related genes distinctly regulated by Manduca sexta Spӓtzle-1/2 and Escherichia coli peptidoglycan.
Insect Biochem Mol Biol. 2024 May;168:104108. doi: 10.1016/j.ibmb.2024.104108. Epub 2024 Mar 27.
4
An evolutionarily conserved serine protease network mediates melanization and Toll activation in .
Sci Adv. 2023 Dec 22;9(51):eadk2756. doi: 10.1126/sciadv.adk2756. Epub 2023 Dec 20.
5
The reproductive status determines tolerance and resistance to in .
Evol Med Public Health. 2023 Sep 6;11(1):332-347. doi: 10.1093/emph/eoad029. eCollection 2023.
6
as an organism model for studying cystic fibrosis and its major associated microbial infections.
Infect Immun. 2023 Nov 16;91(11):e0024023. doi: 10.1128/iai.00240-23. Epub 2023 Oct 17.
7
Paecilomycone Inhibits Quorum Sensing in Gram-Negative Bacteria.
Microbiol Spectr. 2023 Mar 15;11(2):e0509722. doi: 10.1128/spectrum.05097-22.
8
RNA interference is essential to modulating the pathogenesis of mosquito-borne viruses in the yellow fever mosquito .
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213701120. doi: 10.1073/pnas.2213701120. Epub 2023 Mar 9.
9
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster.
PLoS Pathog. 2022 Sep 21;18(9):e1010826. doi: 10.1371/journal.ppat.1010826. eCollection 2022 Sep.
10
Mutations of Gene Disturb Innate Immune Response to .
Int J Mol Sci. 2022 Jun 10;23(12):6499. doi: 10.3390/ijms23126499.

本文引用的文献

2
The Toll and Imd pathways are the major regulators of the immune response in Drosophila.
EMBO J. 2002 Jun 3;21(11):2568-79. doi: 10.1093/emboj/21.11.2568.
6
A genome-wide analysis of immune responses in Drosophila.
Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15119-24. doi: 10.1073/pnas.261573998. Epub 2001 Dec 11.
7
Drosophila as a model host for Pseudomonas aeruginosa infection.
J Bacteriol. 2001 Feb;183(4):1466-71. doi: 10.1128/JB.183.4.1466-1471.2001.
8
Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia.
Immunity. 2000 Nov;13(5):737-48. doi: 10.1016/s1074-7613(00)00072-8.
9
Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts.
Mol Microbiol. 2000 Sep;37(5):981-8. doi: 10.1046/j.1365-2958.2000.02056.x.
10
Plants and animals share functionally common bacterial virulence factors.
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8815-21. doi: 10.1073/pnas.97.16.8815.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验