文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

果蝇对假单胞菌属的吸引力、定殖、传染和死亡率及其生物表面活性剂的毒性。

Drosophila attraction, colonization, contagion, and mortality by Pseudomonas spp. and toxicity of their biosurfactants.

作者信息

Tsipa Argyro, Pettemereidi Maria, Varnava Constantina K, Ungor Izel, Fragkou Eftychia, Apidianakis Yiorgos

机构信息

Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos, 1678, Nicosia, Cyprus.

Nireas International Water Research Centre, University of Cyprus, 1678, Nicosia, Cyprus.

出版信息

Appl Microbiol Biotechnol. 2025 Jun 4;109(1):135. doi: 10.1007/s00253-025-13518-x.


DOI:10.1007/s00253-025-13518-x
PMID:40464961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12137457/
Abstract

Oil bioremediation may be achievable via Pseudomonas spp. leading to low-cost biosurfactant (BSF) production, but the environmental impact is unclear. Here, we studied P. aeruginosa PA14 and PAO1; P. putida mt-2 and F1; and P. citronellolis 620C, P3B5, and SJTE-3, for their ability to degrade oily wastewater (OW), produce BSFs, and impact the model insect, Drosophila melanogaster. Biodegradation was > 86% by day 1 and > 93% by day 7, while BSF production was > 200 mg/L by day 1 and > 400 mg/L by day 7 for all strains. P. aeruginosa PAO1 and PA14 produce rhamnolipids and glycolipopeptides, respectively. P. putida mt-2 and F1 formed glycolipopeptides and glycolipids, respectively. P. citronellolis P3B5 and SJTE-3 yielded glycolipids, whereas 620C produced lipopeptides. Strikingly, Drosophila was mostly attracted to food contaminated with any of the P. aeruginosa strains or P. putida mt-2, which were the most virulent. To the contrary, Drosophila was repelled from food containing the low in virulence P. putida F1 or any of the P. citronellolis strains. All strains exhibited high ability to colonize Drosophila and disperse from fly to fly, but the colonization and contagion extend by P. aeruginosa strains were slightly higher. Moreover, the virulence of Pseudomonas spp. aligned with the toxicity of their BSFs. BSFs produced by P. aeruginosa were the most toxic, followed by P. putida and P. citronellolis, indicating a correlation between BSF toxicity and microbial origin. We concluded that P. citronellolis strains and their BSFs are relatively innocuous to the fly populations, yet highly potent in biodegrading OW. KEY POINTS: • >93% biodegradation of oily wastewater by all Pseudomonas spp. strains by day 7 • The virulence of Pseudomonas spp. aligns with the toxicity of their BSFs • P. citronellolis strains and their BSFs are more innocuous to Drosophila than those of P. putida and P. aeruginosa.

摘要

通过假单胞菌属实现石油生物修复可能是可行的,这会带来低成本生物表面活性剂(BSF)的生产,但对环境的影响尚不清楚。在此,我们研究了铜绿假单胞菌PA14和PAO1;恶臭假单胞菌mt-2和F1;以及香茅假单胞菌620C、P3B5和SJTE-3降解含油废水(OW)、生产BSF以及对模式昆虫黑腹果蝇产生影响的能力。到第1天,所有菌株的生物降解率均>86%,到第7天>93%,而到第1天BSF产量>200 mg/L,到第7天>400 mg/L。铜绿假单胞菌PAO1和PA14分别产生鼠李糖脂和糖脂肽。恶臭假单胞菌mt-2和F1分别形成糖脂肽和糖脂。香茅假单胞菌P3B5和SJTE-3产生糖脂,而620C产生脂肽。引人注目的是,果蝇大多被任何铜绿假单胞菌菌株或毒性最强的恶臭假单胞菌mt-2污染的食物所吸引。相反,果蝇会被含有低毒力的恶臭假单胞菌F1或任何香茅假单胞菌菌株的食物所排斥。所有菌株对果蝇都表现出很强的定殖能力且能在果蝇间传播,但铜绿假单胞菌菌株的定殖和传播范围略高。此外,假单胞菌属的毒力与其BSF的毒性一致。铜绿假单胞菌产生的BSF毒性最强,其次是恶臭假单胞菌和香茅假单胞菌,这表明BSF毒性与微生物来源之间存在相关性。我们得出结论,香茅假单胞菌菌株及其BSF对果蝇种群相对无害,但对含油废水的生物降解能力很强。要点:• 到第7天,所有假单胞菌属菌株对含油废水的生物降解率>93% • 假单胞菌属的毒力与其BSF的毒性一致 • 香茅假单胞菌菌株及其BSF对果蝇的危害比恶臭假单胞菌和铜绿假单胞菌的小

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/f9e01f2745ff/253_2025_13518_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/a643bf5c6217/253_2025_13518_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/76794a4b5044/253_2025_13518_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/dd0725350f7f/253_2025_13518_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/beadeb208f13/253_2025_13518_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/1446796848de/253_2025_13518_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/f9e01f2745ff/253_2025_13518_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/a643bf5c6217/253_2025_13518_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/76794a4b5044/253_2025_13518_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/dd0725350f7f/253_2025_13518_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/beadeb208f13/253_2025_13518_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/1446796848de/253_2025_13518_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/755d/12137457/f9e01f2745ff/253_2025_13518_Fig6_HTML.jpg

相似文献

[1]
Drosophila attraction, colonization, contagion, and mortality by Pseudomonas spp. and toxicity of their biosurfactants.

Appl Microbiol Biotechnol. 2025-6-4

[2]
Enhanced biodegradation and valorization of drilling wastewater via simultaneous production of biosurfactants and polyhydroxyalkanoates by Pseudomonas citronellolis SJTE-3.

Bioresour Technol. 2021-11

[3]
Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle.

Bioprocess Biosyst Eng. 2024-6

[4]
Optimizing Systems for Robust Heterologous Production of Biosurfactants Rhamnolipid and Lyso-Ornithine Lipid in KT2440.

Molecules. 2024-7-11

[5]
Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria.

Lett Appl Microbiol. 2019-7

[6]
Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E.

Lett Appl Microbiol. 2009-6

[7]
Biosurfactant production by Pseudomonas aeruginosa DSVP20 isolated from petroleum hydrocarbon-contaminated soil and its physicochemical characterization.

Environ Sci Pollut Res Int. 2015-7-7

[8]
A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons.

Bioresour Technol. 2019-2-20

[9]
Microbial Biosurfactants-an Ecofriendly Boon to Industries for Green Revolution.

Recent Pat Biotechnol. 2020

[10]
Rhamnolipids produced by Pseudomonas: from molecular genetics to the market.

Microb Biotechnol. 2021-1

本文引用的文献

[1]
Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle.

Bioprocess Biosyst Eng. 2024-6

[2]
Does regulation hold the key to optimizing lipopeptide production in for biotechnology?

Front Bioeng Biotechnol. 2024-2-27

[3]
A case report of and isolated from acute suppurative appendicitis: reveals the potential intestinal colonization and pathogenicity of .

Front Cell Infect Microbiol. 2024-2-16

[4]
Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges.

Environ Res. 2023-12-15

[5]
An unusual presentation of bacteraemia and gastroenteritis infection in a human - a case report and literature review.

Access Microbiol. 2023-6-19

[6]
Charting the Lipopeptidome of Nonpathogenic Pseudomonas.

mSystems. 2023-2-23

[7]
Microbial biosurfactants: a review of recent environmental applications.

Bioengineered. 2022-5

[8]
Proteobacteria and Firmicutes Secreted Factors Exert Distinct Effects on Infection under Normoxia or Mild Hypoxia.

Metabolites. 2022-5-17

[9]
Pseudomonas citronellolis alleviates arsenic toxicity and maintains cellular homeostasis in chickpea (Cicer arietinum L.).

Plant Physiol Biochem. 2022-8-1

[10]
Enhanced biodegradation and valorization of drilling wastewater via simultaneous production of biosurfactants and polyhydroxyalkanoates by Pseudomonas citronellolis SJTE-3.

Bioresour Technol. 2021-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索