Suppr超能文献

Complete cDNA sequence of chicken vigilin, a novel protein with amplified and evolutionary conserved domains.

作者信息

Schmidt C, Henkel B, Pöschl E, Zorbas H, Purschke W G, Gloe T R, Müller P K

机构信息

Med. Universität zu Lübeck, Institut für Med. Molekularbiologie, Federal Republic of Germany.

出版信息

Eur J Biochem. 1992 Jun 15;206(3):625-34. doi: 10.1111/j.1432-1033.1992.tb16967.x.

Abstract

The complete cDNA (4375 bp), coding for a new protein called vigilin, was isolated from chicken chondrocytes. The cDNA shows an open reading frame of 1270 amino acids which are organized in 14 tandemly repeated homologous domains. Each domain consists of two subdomains, one with a conserved sequence motif of 35 amino acids (subdomain A) and another one with a presumptive alpha-helical structure of 21-33 amino acids (subdomain B). 149 amino acids at the N-terminus and 71 amino acids at the C-terminus of vigilin do not show the characteristic domain structure. No sequence characteristic of a signal peptide has been found, which argues for an intracellular localisation of vigilin. Vigilin is highly expressed in freshly isolated chicken chondrocytes but little in chondrocytes after prolonged time in culture. Vigilin mRNA exists in two size species, 4.4 kb and 6.5 kb in length due to the usage of different polyadenylation sites. Comparison of the vigilin sequence with data bases showed a remarkable similarity to protein HX from Saccharomyces cerevisiae [Delahodde, A., Becam, A. M., Perea, J. & Jacq, C. (1986) Nucleic Acids Res. 14, 9213-9214]. The yeast protein consists of eight homologous domains with 11 conserved amino acid residues within a set of 35 amino acids. The N-terminal and C-terminal regions of vigilin and protein HX do not reveal any sequence similarity. These results, together with the demonstration of the characteristic vigilin sequence motif in a human cDNA clone, suggest that the repeats represent evolutionary conserved autonomous domains within a family of proteins found in yeast, chicken and man.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验