Zhao Yi-Lei, McCarren Patrick R, Houk K N, Choi Bo Yoon, Toone Eric J
Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095-1569, USA.
J Am Chem Soc. 2005 Aug 10;127(31):10917-24. doi: 10.1021/ja050018f.
The decomposition of S-nitrosothiols (RSNO) in solution under oxidative conditions is significantly faster than can be accounted for by homolysis of the S-N bond. Here we propose a cationic chain mechanism in which nitrosation of nitrosothiol produces a nitrosated cation that, in turn, reacts with a second nitrosothiol to produce nitrosated disulfide and the NO dimer. The nitrosated disulfide acts as a source of nitrosonium for nitrosothiol nitrosation, completing the catalytic cycle. The mechanism accounts for several unexplained facets of nitrosothiol chemistry in solution, including the observation that the decomposition of an RSNO is accelerated by O(2), mixtures of O(2) and NO, and other oxidants, that decomposition is inhibited by thiols and other antioxidants, that decomposition is dependent on sulfur substitution, and that decomposition often shows nonintegral kinetic orders.
在氧化条件下,溶液中S-亚硝基硫醇(RSNO)的分解速度明显快于通过S-N键均裂所能解释的速度。在此,我们提出一种阳离子链机制,其中亚硝基硫醇的亚硝化产生一个亚硝化阳离子,该阳离子进而与第二个亚硝基硫醇反应生成亚硝化二硫化物和NO二聚体。亚硝化二硫化物作为亚硝基硫醇亚硝化的亚硝鎓来源,从而完成催化循环。该机制解释了溶液中亚硝基硫醇化学中几个无法解释的方面,包括观察到RSNO的分解会被O₂、O₂和NO的混合物以及其他氧化剂加速,分解会被硫醇和其他抗氧化剂抑制,分解取决于硫取代,并且分解通常表现出非整数动力学级数。