Caddick Jonathan M, Hilton Anthony C, Armstrong Richard A, Lambert Peter A, Worthington Tony, Elliott Tom S J
Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
J Microbiol Methods. 2006 Apr;65(1):87-95. doi: 10.1016/j.mimet.2005.06.017. Epub 2005 Aug 1.
Principal components analysis (PCA) has been described for over 50 years; however, it is rarely applied to the analysis of epidemiological data. In this study PCA was critically appraised in its ability to reveal relationships between pulsed-field gel electrophoresis (PFGE) profiles of methicillin-resistant Staphylococcus aureus (MRSA) in comparison to the more commonly employed cluster analysis and representation by dendrograms. The PFGE type following SmaI chromosomal digest was determined for 44 multidrug-resistant hospital-acquired methicillin-resistant S. aureus (MR-HA-MRSA) isolates, two multidrug-resistant community-acquired MRSA (MR-CA-MRSA), 50 hospital-acquired MRSA (HA-MRSA) isolates (from the University Hospital Birmingham, NHS Trust, UK) and 34 community-acquired MRSA (CA-MRSA) isolates (from general practitioners in Birmingham, UK). Strain relatedness was determined using Dice band-matching with UPGMA clustering and PCA. The results indicated that PCA revealed relationships between MRSA strains, which were more strongly correlated with known epidemiology, most likely because, unlike cluster analysis, PCA does not have the constraint of generating a hierarchic classification. In addition, PCA provides the opportunity for further analysis to identify key polymorphic bands within complex genotypic profiles, which is not always possible with dendrograms. Here we provide a detailed description of a PCA method for the analysis of PFGE profiles to complement further the epidemiological study of infectious disease.
主成分分析(PCA)已问世50多年;然而,它很少应用于流行病学数据分析。在本研究中,对主成分分析揭示耐甲氧西林金黄色葡萄球菌(MRSA)脉冲场凝胶电泳(PFGE)图谱之间关系的能力进行了严格评估,并与更常用的聚类分析和树形图表示法进行了比较。对44株耐多药医院获得性耐甲氧西林金黄色葡萄球菌(MR-HA-MRSA)分离株、2株耐多药社区获得性MRSA(MR-CA-MRSA)、50株医院获得性MRSA(HA-MRSA)分离株(来自英国国民健康服务信托基金伯明翰大学医院)和34株社区获得性MRSA(CA-MRSA)分离株(来自英国伯明翰的全科医生)进行了SmaI染色体酶切后的PFGE分型。使用Dice条带匹配和UPGMA聚类以及主成分分析确定菌株相关性。结果表明,主成分分析揭示了MRSA菌株之间的关系,这些关系与已知的流行病学更密切相关,很可能是因为与聚类分析不同,主成分分析没有生成层次分类的限制。此外,主成分分析为进一步分析提供了机会,以识别复杂基因型图谱中的关键多态性条带,而树形图并不总是能够做到这一点。在此,我们详细描述了一种用于分析PFGE图谱的主成分分析方法,以进一步补充传染病的流行病学研究。