Suppr超能文献

基于网络传播的基序蛋白排序

Motif-based protein ranking by network propagation.

作者信息

Kuang Rui, Weston Jason, Noble William Stafford, Leslie Christina

机构信息

Department of Computer Science, Columbia University New York, NY 10027, USA.

出版信息

Bioinformatics. 2005 Oct 1;21(19):3711-8. doi: 10.1093/bioinformatics/bti608. Epub 2005 Aug 2.

Abstract

MOTIVATION

Sequence similarity often suggests evolutionary relationships between protein sequences that can be important for inferring similarity of structure or function. The most widely-used pairwise sequence comparison algorithms for homology detection, such as BLAST and PSI-BLAST, often fail to detect less conserved remotely-related targets.

RESULTS

In this paper, we propose a new general graph-based propagation algorithm called MotifProp to detect more subtle similarity relationships than pairwise comparison methods. MotifProp is based on a protein-motif network, in which edges connect proteins and the k-mer based motif features that they contain. We show that our new motif-based propagation algorithm can improve the ranking results over a base algorithm, such as PSI-BLAST, that is used to initialize the ranking. Despite the complex structure of the protein-motif network, MotifProp can be easily interpreted using the top-ranked motifs and motif-rich regions induced by the propagation, both of which are helpful for discovering conserved structural components in remote homologies.

摘要

动机

序列相似性常常暗示蛋白质序列之间的进化关系,这对于推断结构或功能的相似性可能很重要。用于同源性检测的最广泛使用的成对序列比较算法,如BLAST和PSI-BLAST,常常无法检测到保守性较低的远缘相关目标。

结果

在本文中,我们提出了一种新的基于通用图的传播算法,称为MotifProp,以检测比成对比较方法更微妙的相似性关系。MotifProp基于蛋白质基序网络,其中边连接蛋白质及其包含的基于k-mer的基序特征。我们表明,我们新的基于基序的传播算法可以在用于初始化排名的基础算法(如PSI-BLAST)上改进排名结果。尽管蛋白质基序网络结构复杂,但MotifProp可以使用传播诱导的排名靠前的基序和富含基序的区域轻松解释,这两者都有助于发现远缘同源性中保守的结构成分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验