Suppr超能文献

木质部难养菌通过菌毛驱动的颤动运动进行向上迁移。

Upstream migration of Xylella fastidiosa via pilus-driven twitching motility.

作者信息

Meng Yizhi, Li Yaxin, Galvani Cheryl D, Hao Guixia, Turner James N, Burr Thomas J, Hoch H C

机构信息

Department of Plant Pathology, Cornell University-New York State Agricultural Experiment Station, Geneva, NY 14456, USA.

出版信息

J Bacteriol. 2005 Aug;187(16):5560-7. doi: 10.1128/JB.187.16.5560-5567.2005.

Abstract

Xylella fastidiosa is a xylem-limited nonflagellated bacterium that causes economically important diseases of plants by developing biofilms that block xylem sap flow. How the bacterium is translocated downward in the host plant's vascular system against the direction of the transpiration stream has long been a puzzling phenomenon. Using microfabricated chambers designed to mimic some of the features of xylem vessels, we discovered that X. fastidiosa migrates via type IV-pilus-mediated twitching motility at speeds up to 5 mum min(-1) against a rapidly flowing medium (20,000 mum min(-1)). Electron microscopy revealed that there are two length classes of pili, long type IV pili (1.0 to 5.8 mum) and short type I pili (0.4 to 1.0 mum). We further demonstrated that two knockout mutants (pilB and pilQ mutants) that are deficient in type IV pili do not twitch and are inhibited from colonizing upstream vascular regions in planta. In addition, mutants with insertions in pilB or pilQ (possessing type I pili only) express enhanced biofilm formation, whereas a mutant with an insertion in fimA (possessing only type IV pili) is biofilm deficient.

摘要

木质部难养菌是一种局限于木质部的无鞭毛细菌,它通过形成生物膜来阻塞木质部汁液流动,从而引发对植物具有重要经济影响的疾病。长期以来,这种细菌如何在宿主植物的维管系统中逆着蒸腾流的方向向下转移一直是个令人困惑的现象。我们使用了微制造腔室来模拟木质部导管的一些特征,发现木质部难养菌通过IV型菌毛介导的颤动运动迁移,速度可达5μm/min,逆着快速流动的介质(20,000μm/min)。电子显微镜显示存在两种长度类别的菌毛,长IV型菌毛(1.0至5.8μm)和短I型菌毛(0.4至1.0μm)。我们进一步证明,两个缺乏IV型菌毛的基因敲除突变体(pilB和pilQ突变体)不会颤动,并且在植物体内被抑制定殖于上游维管区域。此外,在pilB或pilQ中插入(仅拥有I型菌毛)的突变体表现出增强的生物膜形成,而在fimA中插入(仅拥有IV型菌毛)的突变体则生物膜形成缺陷。

相似文献

1
Upstream migration of Xylella fastidiosa via pilus-driven twitching motility.
J Bacteriol. 2005 Aug;187(16):5560-7. doi: 10.1128/JB.187.16.5560-5567.2005.
2
Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation.
Microbiology (Reading). 2007 Mar;153(Pt 3):719-726. doi: 10.1099/mic.0.2006/002311-0.
3
Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.
Mol Plant Microbe Interact. 2011 Oct;24(10):1198-206. doi: 10.1094/MPMI-10-10-0252.
4
Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa.
J Bacteriol. 2007 Oct;189(20):7507-10. doi: 10.1128/JB.00934-07. Epub 2007 Aug 10.
7
Autoaggregation of Xylella fastidiosa cells is influenced by type I and type IV pili.
Appl Environ Microbiol. 2008 Sep;74(17):5579-82. doi: 10.1128/AEM.00995-08. Epub 2008 Jul 18.
8
Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber.
Appl Environ Microbiol. 2007 Apr;73(8):2690-6. doi: 10.1128/AEM.02649-06. Epub 2007 Feb 9.
9
Csp1, a Cold Shock Protein Homolog in Xylella fastidiosa Influences Cell Attachment, Pili Formation, and Gene Expression.
Microbiol Spectr. 2021 Dec 22;9(3):e0159121. doi: 10.1128/Spectrum.01591-21. Epub 2021 Nov 17.
10
Differential expression of genes of Xylella fastidiosa in xylem fluid of citrus and grapevine.
FEMS Microbiol Lett. 2010 Mar;304(1):82-8. doi: 10.1111/j.1574-6968.2009.01885.x. Epub 2010 Dec 19.

引用本文的文献

2
Insight into biological strategies and main challenges to control the phytopathogenic bacterium .
Front Plant Sci. 2025 Jun 27;16:1608687. doi: 10.3389/fpls.2025.1608687. eCollection 2025.
3
Nanomaterial-based biosensors: a new frontier in plant pathogen detection and plant disease management.
Front Bioeng Biotechnol. 2025 Apr 23;13:1570318. doi: 10.3389/fbioe.2025.1570318. eCollection 2025.
4
Type IV Pili in Thermophilic Bacteria: Mechanisms and Ecological Implications.
Biomolecules. 2025 Mar 21;15(4):459. doi: 10.3390/biom15040459.
5
Current status and future perspectives of the diagnostic of plant bacterial pathogens.
Front Plant Sci. 2025 Feb 28;16:1547974. doi: 10.3389/fpls.2025.1547974. eCollection 2025.
7
Hyperpiliation, not loss of pilus retraction, reduces pathogenicity.
Microbiol Spectr. 2025 Apr;13(4):e0255824. doi: 10.1128/spectrum.02558-24. Epub 2025 Feb 25.
8
Enhancement of bacterial rheotaxis in non-Newtonian fluids.
Proc Natl Acad Sci U S A. 2024 Dec 10;121(50):e2417614121. doi: 10.1073/pnas.2417614121. Epub 2024 Dec 5.
10
Microbiology of human spaceflight: microbial responses to mechanical forces that impact health and habitat sustainability.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0014423. doi: 10.1128/mmbr.00144-23. Epub 2024 Aug 19.

本文引用的文献

1
Site-Directed Disruption of the fimA and fimF Fimbrial Genes of Xylella fastidiosa.
Phytopathology. 2003 Jun;93(6):675-82. doi: 10.1094/PHYTO.2003.93.6.675.
2
A force-dependent switch reverses type IV pilus retraction.
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):10961-6. doi: 10.1073/pnas.0402305101. Epub 2004 Jul 15.
4
Fastidious xylem-limited bacterial plant pathogens.
Annu Rev Phytopathol. 1996;34:131-51. doi: 10.1146/annurev.phyto.34.1.131.
5
Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants.
Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1737-42. doi: 10.1073/pnas.0308399100. Epub 2004 Jan 30.
6
Use of a green fluorescent strain for analysis of Xylella fastidiosa colonization of Vitis vinifera.
Appl Environ Microbiol. 2003 Dec;69(12):7319-27. doi: 10.1128/AEM.69.12.7319-7327.2003.
7
FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa.
J Bacteriol. 2003 Dec;185(24):7068-76. doi: 10.1128/JB.185.24.7068-7076.2003.
8
Type IV pili and twitching motility.
Annu Rev Microbiol. 2002;56:289-314. doi: 10.1146/annurev.micro.56.012302.160938. Epub 2002 Jan 30.
9
Twitching motility of Ralstonia solanacearum requires a type IV pilus system.
Microbiology (Reading). 2001 Dec;147(Pt 12):3215-29. doi: 10.1099/00221287-147-12-3215.
10
Transposon mutagenesis of Xylella fastidiosa by electroporation of Tn5 synaptic complexes.
Mol Plant Microbe Interact. 2001 Jun;14(6):701-6. doi: 10.1094/MPMI.2001.14.6.701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验