Edlind Thomas D, Henry Karl W, Vermitsky John-Paul, Edlind Merritt P, Raj Shriya, Katiyar Santosh K
Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
Curr Genet. 2005 Aug;48(2):117-25. doi: 10.1007/s00294-005-0008-3. Epub 2005 Sep 14.
PCR product-based gene disruption has greatly accelerated molecular analysis of Saccharomyces cerevisiae. This approach involves amplification of a marker gene (e.g., URA3) including its flanking regulatory (promoter and polyadenylation) regions using primers that include at their 5' ends about 50 bases of homology to the targeted gene. Unfortunately, this approach has proved less useful in organisms with higher rates of non-homologous recombination; e.g., in the yeast Candida glabrata, desired recombinants represent < or =2% of transformants. We modified the PCR-based approach by eliminating marker-flanking regions and precisely targeting recombination such that marker expression depends on the regulatory sequences of the disrupted gene. Application of this promoter-dependent disruption of genes (PRODIGE) method to three C. glabrata genes (SLT2, LEM3, and PDR1) yielded desired recombinants at frequencies of 20, 31, and 11%, the latter representing a weakly expressed gene. For Candida albicans LEM3 and RHO1, specificity was 79-95% for one or both alleles, >sixfold higher than the published results with conventional PCR-based gene disruption. All 5 C. glabrata and C. albicans mutants had predicted phenotypes of calcofluor hypersensitivity (slt2Delta and RHO1/rho1Delta), cycloheximide hypersensitivity (pdr1Delta), or miltefosine resistance (lem3Delta and lem3Delta/lem3Delta). PRODIGE application to the S. cerevisiae PDR5 gene in strains with and without the Pdr1-Pdr3 transcriptional activators of this gene confirmed that transformant yield and growth rate depend on promoter strength. Using this PDR5 promoter-URA3 recombinant, we further demonstrate a simple extension of the method that yields regulatory mutants via 5-fluoroorotic acid selection. PRODIGE warrants testing in other yeast, molds, and beyond.
基于PCR产物的基因破坏极大地加速了酿酒酵母的分子分析。该方法涉及使用在其5'端包含与目标基因约50个碱基同源性的引物来扩增标记基因(例如URA3),包括其侧翼调控(启动子和聚腺苷酸化)区域。不幸的是,该方法在非同源重组率较高的生物体中证明不太有用;例如,在光滑念珠菌中,所需的重组体占转化体的比例小于或等于2%。我们通过消除标记侧翼区域并精确靶向重组来改进基于PCR的方法,使得标记表达取决于被破坏基因的调控序列。将这种基因的启动子依赖性破坏(PRODIGE)方法应用于三个光滑念珠菌基因(SLT2、LEM3和PDR1),得到所需重组体的频率分别为20%、31%和11%,后者代表一个弱表达基因。对于白色念珠菌的LEM3和RHO1,一个或两个等位基因的特异性为79 - 95%,比基于传统PCR的基因破坏的已发表结果高六倍以上。所有5个光滑念珠菌和白色念珠菌突变体都具有预测的表型,即对荧光增白剂过敏(slt2Delta和RHO1/rho1Delta)、对环己酰亚胺过敏(pdr1Delta)或对米托蒽醌耐药(lem3Delta和lem3Delta/lem3Delta)。将PRODIGE应用于有和没有该基因的Pdr1 - Pdr3转录激活因子的酿酒酵母PDR5基因菌株,证实转化体产量和生长速率取决于启动子强度。使用这种PDR5启动子 - URA3重组体,我们进一步证明了该方法的一个简单扩展,即通过5 - 氟乳清酸选择产生调控突变体。PRODIGE值得在其他酵母、霉菌及其他生物中进行测试。