Suppr超能文献

步跟踪腕部运动中冗余肌肉的最优控制

Optimal control of redundant muscles in step-tracking wrist movements.

作者信息

Haruno Masahiko, Wolpert Daniel M

机构信息

Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK.

出版信息

J Neurophysiol. 2005 Dec;94(6):4244-55. doi: 10.1152/jn.00404.2005. Epub 2005 Aug 3.

Abstract

An important question in motor neuroscience is how the nervous system controls the spatiotemporal activation patterns of redundant muscles in generating accurate movements. The redundant muscles may not only underlie the flexibility of our movements but also pose the challenging problem of how to select a specific sequence of muscle activation from the huge number of possible activations. Here, we propose that noise in the motor command that has an influence on task achievement should be considered in determining the optimal motor commands over redundant muscles. We propose an optimal control model for step-tracking wrist movements with redundant muscles that minimizes the end-point variance under signal-dependent noise. Step-tracking wrist movements of human and nonhuman primates provide a detailed data set to investigate the control mechanisms in movements with redundant muscles. The experimental EMG data can be summarized by two eminent features: 1) amplitude-graded EMG pattern, where the timing of the activity of the agonist and antagonist bursts show slight variations with changes in movement directions, and only the amplitude of activity is modulated; and 2) cosine tuning for movement directions exhibited by the agonist and antagonist bursts, and the discrepancy found between a muscle's agonist preferred direction and its pulling direction. In addition, it is also an important observation that subjects often overshoot the target. We demonstrate that the proposed model captures not only the spatiotemporal activation patterns of wrist muscles but also trajectory overshooting. This suggests that when recruiting redundant muscles, the nervous system may optimize the motor commands across the muscles to reduce the negative effects of motor noise.

摘要

运动神经科学中的一个重要问题是,神经系统如何在产生精确运动时控制冗余肌肉的时空激活模式。冗余肌肉不仅可能是我们运动灵活性的基础,还带来了一个具有挑战性的问题,即如何从大量可能的激活中选择特定的肌肉激活序列。在这里,我们提出,在确定针对冗余肌肉的最佳运动指令时,应考虑对任务完成有影响的运动指令中的噪声。我们提出了一个针对具有冗余肌肉的步跟踪手腕运动的最优控制模型,该模型在信号相关噪声下使端点方差最小化。人类和非人类灵长类动物的步跟踪手腕运动提供了一个详细的数据集,用于研究具有冗余肌肉的运动中的控制机制。实验性肌电图数据可以通过两个显著特征来概括:1)幅度分级肌电图模式,其中主动肌和拮抗肌爆发活动的时间随运动方向的变化略有变化,只有活动幅度被调制;2)主动肌和拮抗肌爆发对运动方向的余弦调谐,以及在一块肌肉的主动肌偏好方向与其牵拉方向之间发现的差异。此外,受试者经常超过目标也是一个重要的观察结果。我们证明,所提出的模型不仅捕捉到了手腕肌肉的时空激活模式,还捕捉到了轨迹超调。这表明,在募集冗余肌肉时,神经系统可能会优化跨肌肉的运动指令,以减少运动噪声的负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验