Suppr超能文献

考虑腕部运动中肌肉黏弹性的最优肌肉活动计算模型。

A computational model for optimal muscle activity considering muscle viscoelasticity in wrist movements.

机构信息

Precision and Intelligence Laboratory, Tokyo Institute of Technology J3-10 4259 Nagatsuda, Midori-ku, Yokohama 226-8503, Japan.

出版信息

J Neurophysiol. 2013 Apr;109(8):2145-60. doi: 10.1152/jn.00542.2011. Epub 2013 Jan 16.

Abstract

To understand the mechanism of neural motor control, it is important to clarify how the central nervous system organizes the coordination of redundant muscles. Previous studies suggested that muscle activity for step-tracking wrist movements are optimized so as to reduce total effort or end-point variance under neural noise. However, since the muscle dynamics were assumed as a simple linear system, some characteristic patterns of experimental EMG were not seen in the simulated muscle activity of the previous studies. The biological muscle is known to have dynamic properties in which its elasticity and viscosity depend on activation level. The motor control system is supposed to consider the viscoelasticity of the muscles when generating motor command signals. In this study, we present a computational motor control model that can control a musculoskeletal system with nonlinear dynamics. We applied the model to step-tracking wrist movements actuated by five muscles with dynamic viscoelastic properties. To solve the motor redundancy, we designed the control model to generate motor commands that maximize end-point accuracy under signal-dependent noise, while minimizing the squared sum of them. Here, we demonstrate that the muscle activity simulated by our model exhibits spatiotemporal features of experimentally observed muscle activity of human and nonhuman primates. In addition, we show that the movement trajectories resulting from the simulated muscle activity resemble experimentally observed trajectories. These results suggest that, by utilizing inherent viscoelastic properties of the muscles, the neural system may optimize muscle activity to improve motor performance.

摘要

为了理解神经运动控制的机制,阐明中枢神经系统如何组织冗余肌肉的协调是很重要的。先前的研究表明,为了在神经噪声下优化跟踪手腕运动的步行动作的肌肉活动,以减少总努力或端点方差。然而,由于肌肉动力学被假设为一个简单的线性系统,因此在先前研究的模拟肌肉活动中没有看到一些实验肌电图的特征模式。众所周知,生物肌肉具有动态特性,其弹性和粘性取决于激活水平。运动控制系统在生成运动命令信号时应该考虑肌肉的粘弹性。在这项研究中,我们提出了一个可以控制具有非线性动力学的骨骼肌肉系统的计算运动控制模型。我们将该模型应用于由五个具有动态粘弹性特性的肌肉驱动的跟踪手腕运动。为了解决运动冗余问题,我们设计了控制模型,以在信号相关噪声下最大化端点精度,同时最小化它们的平方和。在这里,我们证明了我们的模型模拟的肌肉活动表现出人类和非人类灵长类动物实验观察到的肌肉活动的时空特征。此外,我们还表明,模拟肌肉活动产生的运动轨迹与实验观察到的轨迹相似。这些结果表明,通过利用肌肉的固有粘弹性特性,神经系统可以优化肌肉活动,以提高运动性能。

相似文献

2
Optimal control of redundant muscles in step-tracking wrist movements.步跟踪腕部运动中冗余肌肉的最优控制
J Neurophysiol. 2005 Dec;94(6):4244-55. doi: 10.1152/jn.00404.2005. Epub 2005 Aug 3.

引用本文的文献

本文引用的文献

2
Dynamics of wrist rotations.手腕旋转的动力学。
J Biomech. 2011 Feb 24;44(4):614-21. doi: 10.1016/j.jbiomech.2010.11.016. Epub 2010 Dec 4.
3
The curvature and variability of wrist and arm movements.腕部和手臂运动的曲率和可变性。
Exp Brain Res. 2010 May;203(1):63-73. doi: 10.1007/s00221-010-2210-x. Epub 2010 Apr 11.
4
Efficient computation of optimal actions.最优动作的高效计算。
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11478-83. doi: 10.1073/pnas.0710743106. Epub 2009 Jul 2.
5
Feedforward impedance control efficiently reduce motor variability.前馈阻抗控制有效地降低了电机的变异性。
Neurosci Res. 2009 Sep;65(1):6-10. doi: 10.1016/j.neures.2009.05.012. Epub 2009 Jun 11.
6
Learning and generation of goal-directed arm reaching from scratch.从零开始学习并生成目标导向的手臂伸展动作。
Neural Netw. 2009 May;22(4):348-61. doi: 10.1016/j.neunet.2008.11.004. Epub 2008 Nov 30.
9
10
An optimization principle for determining movement duration.一种用于确定运动持续时间的优化原则。
J Neurophysiol. 2006 Jun;95(6):3875-86. doi: 10.1152/jn.00751.2005. Epub 2006 Mar 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验