Suppr超能文献

利用肌电肌肉骨骼模型阐明感觉运动控制原理。

Elucidating Sensorimotor Control Principles with Myoelectric Musculoskeletal Models.

作者信息

Goodman Sarah E, Hasson Christopher J

机构信息

Neuromotor Systems Laboratory, Department of Bioengineering, Northeastern University, Boston, MA, United States.

Neuromotor Systems Laboratory, Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA, United States.

出版信息

Front Hum Neurosci. 2017 Nov 10;11:531. doi: 10.3389/fnhum.2017.00531. eCollection 2017.

Abstract

There is an old saying that you must walk a mile in someone's shoes to truly understand them. This mini-review will synthesize and discuss recent research that attempts to make humans "walk a mile" in an artificial musculoskeletal system to gain insight into the principles governing human movement control. In this approach, electromyography (EMG) is used to sample human motor commands; these commands serve as inputs to mathematical models of muscular dynamics, which in turn act on a model of skeletal dynamics to produce a simulated motor action in real-time (i.e., the model's state is updated fast enough produce smooth motion without noticeable transitions; Manal et al., 2002). In this mini-review, these are termed myoelectric musculoskeletal models (MMMs). After a brief overview of typical MMM design and operation principles, the review will highlight how MMMs have been used for understanding human sensorimotor control and learning by evoking apparent alterations in a user's biomechanics, neural control, and sensory feedback experiences.

摘要

有句老话说,要真正理解一个人,你得穿上他的鞋子走一英里路。这篇小型综述将综合并讨论最近的研究,这些研究试图让人类在人工肌肉骨骼系统中“走一英里路”,以深入了解人类运动控制的原理。在这种方法中,肌电图(EMG)用于采集人类运动指令;这些指令作为肌肉动力学数学模型的输入,该模型进而作用于骨骼动力学模型以实时产生模拟运动动作(即,模型状态更新得足够快,以产生平滑运动且无明显过渡;马纳尔等人,2002年)。在这篇小型综述中,这些被称为肌电肌肉骨骼模型(MMM)。在简要概述典型的MMM设计和操作原理之后,该综述将重点介绍MMM如何通过引发用户生物力学、神经控制和感觉反馈体验的明显变化,用于理解人类感觉运动控制和学习。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca2/5686051/f109bbb73967/fnhum-11-00531-g0001.jpg

相似文献

1
Elucidating Sensorimotor Control Principles with Myoelectric Musculoskeletal Models.
Front Hum Neurosci. 2017 Nov 10;11:531. doi: 10.3389/fnhum.2017.00531. eCollection 2017.
4
Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task.
J Neural Eng. 2017 Jun;14(3):036008. doi: 10.1088/1741-2552/aa61bc. Epub 2017 Feb 21.
6
The Neural Feedback Response to Error As a Teaching Signal for the Motor Learning System.
J Neurosci. 2016 Apr 27;36(17):4832-45. doi: 10.1523/JNEUROSCI.0159-16.2016.
7
Real-time intelligent pattern recognition algorithm for surface EMG signals.
Biomed Eng Online. 2007 Dec 3;6:45. doi: 10.1186/1475-925X-6-45.
8
Human muscle spindles act as forward sensory models.
Curr Biol. 2010 Oct 12;20(19):1763-7. doi: 10.1016/j.cub.2010.08.049. Epub 2010 Sep 16.
9
Learning to stand with unexpected sensorimotor delays.
Elife. 2021 Aug 10;10:e65085. doi: 10.7554/eLife.65085.
10
Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):573-81. doi: 10.1109/TNSRE.2015.2441061. Epub 2015 Jun 4.

引用本文的文献

1
A Neuromotor to Acoustical Jaw-Tongue Projection Model With Application in Parkinson's Disease Hypokinetic Dysarthria.
Front Hum Neurosci. 2021 Mar 15;15:622825. doi: 10.3389/fnhum.2021.622825. eCollection 2021.

本文引用的文献

1
An Interactive Simulator for Imposing Virtual Musculoskeletal Dynamics.
IEEE Trans Biomed Eng. 2018 Mar;65(3):539-549. doi: 10.1109/TBME.2017.2703298. Epub 2017 May 10.
3
Transfer of dynamic motor skills acquired during isometric training to free motion.
J Neurophysiol. 2017 Jul 1;118(1):219-233. doi: 10.1152/jn.00614.2016. Epub 2017 Mar 29.
4
A two-muscle, continuum-mechanical forward simulation of the upper limb.
Biomech Model Mechanobiol. 2017 Jun;16(3):743-762. doi: 10.1007/s10237-016-0850-x. Epub 2016 Nov 11.
5
EMG Versus Torque Control of Human-Machine Systems: Equalizing Control Signal Variability Does not Equalize Error or Uncertainty.
IEEE Trans Neural Syst Rehabil Eng. 2017 Jun;25(6):660-667. doi: 10.1109/TNSRE.2016.2598095. Epub 2016 Aug 25.
6
Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
Exp Brain Res. 2016 Aug;234(8):2403-14. doi: 10.1007/s00221-016-4645-1. Epub 2016 Apr 13.
7
Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2017 Mar;25(3):183-195. doi: 10.1109/TNSRE.2016.2550864. Epub 2016 Apr 7.
8
Neural Control Adaptation to Motor Noise Manipulation.
Front Hum Neurosci. 2016 Mar 1;10:59. doi: 10.3389/fnhum.2016.00059. eCollection 2016.
9
Muscle synergies: input or output variables for neural control?
Dev Med Child Neurol. 2015 Dec;57(12):1091-2. doi: 10.1111/dmcn.12843. Epub 2015 Jul 21.
10
Motor primitives--new data and future questions.
Curr Opin Neurobiol. 2015 Aug;33:156-65. doi: 10.1016/j.conb.2015.04.004. Epub 2015 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验