Suppr超能文献

大鼠前列腺中13个基因的表达数量性状位点分析

Expression quantitative trait loci analysis of 13 genes in the rat prostate.

作者信息

Yamashita Satoshi, Wakazono Kuniko, Nomoto Tomoko, Tsujino Yoshimi, Kuramoto Takashi, Ushijima Toshikazu

机构信息

Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan.

出版信息

Genetics. 2005 Nov;171(3):1231-8. doi: 10.1534/genetics.104.038174. Epub 2005 Aug 3.

Abstract

Differential expression of mRNA among animal strains is one of the mechanisms for their diversity. cDNA microarray analysis of the prostates of BUF/Nac (BUF) and ACI/N (ACI) rats, which show different susceptibility to prostate cancers, found 195 differentially expressed genes. To identify loci that control differential expression of 13 genes with diverse expression levels, their expression levels were measured by quantitative RT-PCR in 89 backcross rats, and expression quantitative trait locus (eQTL) analysis was performed. Nine genes [Aldh1a1, Aldr1, Bmp6, Cdkn1a (p21), Cntn6, Ghr, Jund, Nupr1, and RT1-M3] were controlled by cis-acting loci. Cdkn1a, a cell cycle regulator and a candidate for a prostate cancer susceptibility gene, was mapped to its own locus and had polymorphisms, including a 119-bp insertion in the 5' upstream region in BUF rats. Four genes (Kclr, Pbsn, Psat1, and Ptn) were controlled by trans-acting loci. Pbsn, a prostate-specific gene on chromosome X, was controlled by a QTL on chromosome 8. Depending upon which gene that we selected from the genes widely used for normalization (Actb, Gapd, or Ppia), different QTL were mapped for Kclr, Psat1, and Ptn. Normalization using Actb most appropriately explained the expression levels in a congenic strain for chromosome 3. eQTL analysis with precise measurement of expression levels and appropriate normalization was shown to be effective for mapping loci that control gene expression in vivo.

摘要

动物品系间mRNA的差异表达是其多样性的机制之一。对患前列腺癌易感性不同的BUF/Nac(BUF)大鼠和ACI/N(ACI)大鼠的前列腺进行cDNA微阵列分析,发现了195个差异表达基因。为了鉴定控制13个表达水平各异的基因差异表达的基因座,通过定量RT-PCR在89只回交大鼠中测量了它们的表达水平,并进行了表达定量性状基因座(eQTL)分析。9个基因[醛脱氢酶1家族成员A1(Aldh1a1)、醛还原酶1(Aldr1)、骨形态发生蛋白6(Bmp6)、细胞周期蛋白依赖性激酶1A(Cdkn1a,即p21)、接触蛋白6(Cntn6)、生长激素受体(Ghr)、原癌基因蛋白Jun(Jund)、核仁素1(Nupr1)和RT1-M3]受顺式作用基因座控制。Cdkn1a是一种细胞周期调节因子,也是前列腺癌易感基因的候选基因,它被定位到自身基因座上,并且存在多态性,包括BUF大鼠5'上游区域的119 bp插入。4个基因[钾通道亚家族K成员18(Kclr)、前列腺分泌蛋白(Pbsn)、磷酸丝氨酸转氨酶1(Psat1)和多效生长因子(Ptn)]受反式作用基因座控制。Pbsn是X染色体上的一个前列腺特异性基因,受8号染色体上的一个QTL控制。根据我们从广泛用于标准化的基因(β-肌动蛋白(Actb)、甘油醛-3-磷酸脱氢酶(Gapd)或肽基脯氨酰异构酶A(Ppia))中选择的基因不同,Kclr, Psat1和Ptn的QTL定位也不同。使用Actb进行标准化最恰当地解释了3号染色体同源导入系中的表达水平。对表达水平进行精确测量并进行适当标准化的eQTL分析被证明对于定位体内控制基因表达的基因座是有效的。

相似文献

1
Expression quantitative trait loci analysis of 13 genes in the rat prostate.
Genetics. 2005 Nov;171(3):1231-8. doi: 10.1534/genetics.104.038174. Epub 2005 Aug 3.
2
Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array.
Physiol Genomics. 2005 Nov 17;23(3):318-26. doi: 10.1152/physiolgenomics.00164.2004. Epub 2005 Oct 4.
4
Quantitative genetic basis of arterial phenotypes in the Brown Norway rat.
Physiol Genomics. 2007 Jun 19;30(1):17-25. doi: 10.1152/physiolgenomics.00209.2006. Epub 2007 Mar 13.
5
Gene expression profiling of the left ventricles in a rat model of intrinsic aerobic running capacity.
Physiol Genomics. 2005 Sep 21;23(1):62-71. doi: 10.1152/physiolgenomics.00251.2004. Epub 2005 Jul 20.
7
High resolution mapping of Cia3: a common arthritis quantitative trait loci in different species.
J Immunol. 2009 Mar 1;182(5):3016-23. doi: 10.4049/jimmunol.0803005.
8
Selective transcriptional profiling for trait-based eQTL mapping.
Anim Genet. 2006 Aug;37 Suppl 1:13-7. doi: 10.1111/j.1365-2052.2006.01478.x.
9
Change of the cell cycle after flutamide treatment in prostate cancer cells and its molecular mechanism.
Asian J Androl. 2005 Dec;7(4):375-80. doi: 10.1111/j.1745-7262.2005.00031.x.
10
Gene expression variation and expression quantitative trait mapping of human chromosome 21 genes.
Hum Mol Genet. 2005 Dec 1;14(23):3741-9. doi: 10.1093/hmg/ddi404. Epub 2005 Oct 26.

引用本文的文献

2
The Assembled Genome of the Stroke-Prone Spontaneously Hypertensive Rat.
Hypertension. 2023 Jan;80(1):138-146. doi: 10.1161/HYPERTENSIONAHA.122.20140. Epub 2022 Nov 4.
3
The regulatory landscape of multiple brain regions in outbred heterogeneous stock rats.
Nucleic Acids Res. 2022 Oct 28;50(19):10882-10895. doi: 10.1093/nar/gkac912.
4
Parallel biocomputing.
Source Code Biol Med. 2011 Mar 18;6:4. doi: 10.1186/1751-0473-6-4.
5
Extraordinary sequence divergence at Tsga8, an X-linked gene involved in mouse spermiogenesis.
Mol Biol Evol. 2011 May;28(5):1675-86. doi: 10.1093/molbev/msq348. Epub 2010 Dec 24.
6
Systems genetics, bioinformatics and eQTL mapping.
Genetica. 2010 Oct;138(9-10):915-24. doi: 10.1007/s10709-010-9480-x. Epub 2010 Sep 3.
8
Dietary fat-dependent transcriptional architecture and copy number alterations associated with modifiers of mammary cancer metastasis.
Clin Exp Metastasis. 2010 May;27(5):279-93. doi: 10.1007/s10585-010-9326-z. Epub 2010 Mar 31.
9
Using transcriptome profiling to characterize QTL regions on chicken chromosome 5.
BMC Genomics. 2009 Dec 2;10:575. doi: 10.1186/1471-2164-10-575.

本文引用的文献

2
Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease.
Nat Genet. 2005 Mar;37(3):243-53. doi: 10.1038/ng1522. Epub 2005 Feb 13.
3
Genetic architecture of transcript-level variation in differentiating xylem of a eucalyptus hybrid.
Genetics. 2005 Apr;169(4):2295-303. doi: 10.1534/genetics.104.039198. Epub 2005 Jan 31.
4
Genetic inheritance of gene expression in human cell lines.
Am J Hum Genet. 2004 Dec;75(6):1094-105. doi: 10.1086/426461. Epub 2004 Oct 21.
5
Genetic analysis of genome-wide variation in human gene expression.
Nature. 2004 Aug 12;430(7001):743-7. doi: 10.1038/nature02797. Epub 2004 Jul 21.
10
Genetics of gene expression surveyed in maize, mouse and man.
Nature. 2003 Mar 20;422(6929):297-302. doi: 10.1038/nature01434.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验