Suppr超能文献

顶复门寄生虫肉孢子虫神经元中的质体分离与细胞分裂。

Plastid segregation and cell division in the apicomplexan parasite Sarcocystis neurona.

作者信息

Vaishnava Shipra, Morrison David P, Gaji Rajshekhar Y, Murray John M, Entzeroth Rolf, Howe Daniel K, Striepen Boris

机构信息

Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.

出版信息

J Cell Sci. 2005 Aug 1;118(Pt 15):3397-407. doi: 10.1242/jcs.02458.

Abstract

Apicomplexan parasites harbor a secondary plastid that is essential to their survival. Several metabolic pathways confined to this organelle have emerged as promising parasite-specific drug targets. The maintenance of the organelle and its genome is an equally valuable target. We have studied the replication and segregation of this important organelle using the parasite Sarcocystis neurona as a cell biological model. This model system makes it possible to differentiate and dissect organellar growth, fission and segregation over time, because of the parasite's peculiar mode of cell division. S. neurona undergoes five cycles of chromosomal replication without nuclear division, thus yielding a cell with a 32N nucleus. This nucleus undergoes a sixth replication cycle concurrent with nuclear division and cell budding to give rise to 64 haploid daughter cells. Interestingly, intranuclear spindles persist throughout the cell cycle, thereby providing a potential mechanism to organize chromosomes and organelles in an organism that undergoes dramatic changes in ploidy. The development of the plastid mirrors that of the nucleus, a continuous organelle, which grows throughout the parasite's development and shows association with all centrosomes. Pharmacological ablation of the parasite's multiple spindles demonstrates their essential role in the organization and faithful segregation of the plastid. By using several molecular markers we have timed organelle fission to the last replication cycle and tied it to daughter cell budding. Finally, plastids were labeled by fluorescent protein expression using a newly developed S. neurona transfection system. With these transgenic parasites we have tested our model in living cells employing laser bleaching experiments.

摘要

顶复门寄生虫含有一种对其生存至关重要的次生质体。局限于该细胞器的几种代谢途径已成为有前景的寄生虫特异性药物靶点。该细胞器及其基因组的维持也是一个同样有价值的靶点。我们以寄生虫纳氏肉孢子虫作为细胞生物学模型,研究了这个重要细胞器的复制和分离。由于该寄生虫独特的细胞分裂方式,这个模型系统使得随着时间推移区分和剖析细胞器的生长、裂变和分离成为可能。纳氏肉孢子虫经历五个染色体复制周期而无核分裂,从而产生一个具有32倍体细胞核的细胞。这个细胞核在核分裂和细胞出芽的同时经历第六个复制周期,产生64个单倍体子细胞。有趣的是,核内纺锤体在整个细胞周期中持续存在,从而为在倍性发生巨大变化的生物体中组织染色体和细胞器提供了一种潜在机制。质体的发育与细胞核的发育相似,细胞核是一个连续的细胞器,在寄生虫的整个发育过程中生长,并与所有中心体相关联。对该寄生虫多个纺锤体的药理学消融证明了它们在质体的组织和准确分离中的重要作用。通过使用几种分子标记,我们已将细胞器裂变的时间确定到最后一个复制周期,并将其与子细胞出芽联系起来。最后,利用新开发的纳氏肉孢子虫转染系统通过荧光蛋白表达对质体进行标记。利用这些转基因寄生虫,我们在活细胞中采用激光漂白实验对我们的模型进行了测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验