Kumakura Yoshitaka, Gjedde Albert, Danielsen Erik H, Christensen Søren, Cumming Paul
PET Centre, Aarhus University Hospital, Denmark.
J Cereb Blood Flow Metab. 2006 Mar;26(3):358-70. doi: 10.1038/sj.jcbfm.9600202.
Conventional graphical analysis of positron emission tomography (PET) recordings of the cerebral uptake of the DOPA decarboxylase substrate [(18)F]fluorodopa (FDOPA) assumes irreversible trapping of [(18)F]fluorodopamine formed in the brain. However, 4-h long PET recordings allow the estimation of a rate constant for elimination of [(18)F]fluorodopamine from the brain (k(loss)), from which can be calculated an effective distribution volume (EDV(1)), which is an index of [(18)F]fluorodopamine storage capacity. We earlier developed a method employing 2-h long FDOPA recordings for the estimation of k(loss) and EDV, here defined as EDV(2). This method is based on subtraction of the calculated brain concentrations of the FDOPA metabolite O-methyl-FDOPA, rather than the subtraction of the entire radioactivity in a reference region. We now extend this method for the parametric mapping of these parameters in the brain of healthy aged volunteers and patients with Parkinson's disease (PD), with asymmetry of motor symptoms. For parametric mapping, we use a novel application of a multilinear solution for the two-tissue compartment FDOPA model. We also test a new application of the Logan graphical analysis for mapping of the FDOPA distribution volume at equilibrium. The estimates of k(loss) and EDV(2) were more sensitive for the discrimination of biochemical abnormality in the putamen of patients with early PD relative to healthy aged subjects, than was the conventional net influx estimate. Of the several methods, multilinear estimates of EDV(2) were most sensitive for discrimination of PD and normal putamen. However, k(loss) was most sensitive for detecting biochemical asymmetry in the putamen of PD patients, and only k(loss) also detected in the caudate of PD patients a decline in the retention of [(18)F]fluorodopamine relative to healthy aged control subjects.
对大脑摄取多巴脱羧酶底物[(18)F]氟多巴(FDOPA)的正电子发射断层扫描(PET)记录进行传统的图形分析时,假定在大脑中形成的[(18)F]氟多巴胺会发生不可逆捕获。然而,长达4小时的PET记录可以估算出[(18)F]氟多巴胺从大脑中消除的速率常数(k(loss)),据此可以计算出有效分布容积(EDV(1)),它是[(18)F]氟多巴胺储存能力的一个指标。我们之前开发了一种方法,利用长达2小时的FDOPA记录来估算k(loss)和EDV,这里将其定义为EDV(2)。该方法基于减去计算得出的FDOPA代谢物O-甲基-FDOPA的脑浓度,而不是减去参考区域中的全部放射性。我们现在将此方法扩展到对健康老年志愿者和有运动症状不对称的帕金森病(PD)患者大脑中这些参数进行参数映射。对于参数映射,我们对双组织室FDOPA模型使用了多线性解的一种新应用。我们还测试了洛根图形分析在平衡状态下映射FDOPA分布容积的一种新应用。与传统的净流入估计相比,k(loss)和EDV(2)的估计对于区分早期PD患者与健康老年受试者壳核中的生化异常更为敏感。在几种方法中,EDV(2)的多线性估计对于区分PD和正常壳核最为敏感。然而,k(loss)对于检测PD患者壳核中的生化不对称最为敏感,并且只有k(loss)还检测到PD患者尾状核中[(18)F]氟多巴胺相对于健康老年对照受试者的滞留下降。