Suppr超能文献

盐度诱导的拟南芥sos突变体离体根的离子通量模式。

Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants.

作者信息

Shabala Lana, Cuin Tracey A, Newman Ian A, Shabala Sergey

机构信息

School of Agricultural Science, University of Tasmania, 252-21, 7001, Hobart, TAS, Australia.

出版信息

Planta. 2005 Dec;222(6):1041-50. doi: 10.1007/s00425-005-0074-2. Epub 2005 Aug 4.

Abstract

The SOS signal-transduction pathway is known to be important for ion homeostasis and salt tolerance in plants. However, there is a lack of in planta electrophysiological data about how the changes in signalling and ion transport activity are integrated at the cellular and tissue level. In this study, using the non-invasive ion flux MIFE technique, we compared net K+, H+ and Na+ fluxes from elongation and mature root zones of Arabidopsis wild type Columbia and sos mutants. Our results can be summarised as follows: (1) SOS mutations affect the function of the entire root, not just the root apex; (2) SOS signalling pathway is highly branched; (3) Na+ effects on SOS1 may by-pass the SOS2/SOS3 complex in the root apex; (4) SOS mutation affects H+ transport even in the absence of salt stress; (5) SOS1 mutation affects intracellular K+ homeostasis with a plasma membrane depolarisation-activated outward-rectifying K+ channel being a likely target; (6) H+ pump also may be a target of SOS signalling. We provide an improved model of SOS signalling and discuss physiological mechanisms underlying salt stress perception and signalling in plants. Our work shows that in planta studies are essential for understanding the functional genomics of plant salt tolerance.

摘要

已知SOS信号转导途径对植物的离子稳态和耐盐性很重要。然而,关于信号传导和离子转运活性的变化如何在细胞和组织水平上整合,目前缺乏植物体内的电生理数据。在本研究中,我们使用非侵入性离子通量MIFE技术,比较了拟南芥野生型哥伦比亚和sos突变体伸长区和成熟区根的净钾离子、氢离子和钠离子通量。我们的结果总结如下:(1)SOS突变影响整个根的功能,而不仅仅是根尖;(2)SOS信号通路高度分支;(3)钠离子对SOS1的影响可能绕过根尖中的SOS2/SOS3复合体;(4)即使在没有盐胁迫的情况下,SOS突变也会影响氢离子转运;(5)SOS1突变影响细胞内钾离子稳态,质膜去极化激活的外向整流钾离子通道可能是一个靶点;(6)氢离子泵也可能是SOS信号的一个靶点。我们提供了一个改进的SOS信号模型,并讨论了植物盐胁迫感知和信号传导的生理机制。我们的工作表明,植物体内研究对于理解植物耐盐性功能基因组学至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验