Vila Jorge A, Ripoll Daniel R, Arnautova Yelena A, Vorobjev Yury N, Scheraga Harold A
Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA.
Proteins. 2005 Oct 1;61(1):56-68. doi: 10.1002/prot.20531.
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2(zeta) possible ionization states of the whole molecule, with zeta being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.
这里的核心问题是,使用蛋白质溶质的固定电荷分布,还是通过求解泊松方程来考虑质子结合平衡的处理方法,能更好地区分蛋白质的天然构象和非天然构象。在对7种蛋白质电荷分布的分析中,我们通过探索整个分子的2(ζ)种可能的电离状态(其中ζ是氨基酸序列中可电离基团的数量),来估计每种构象下溶剂化自由能对总自由能的贡献,这些构象来自7种蛋白质的集合。作为对静电相互作用在确定天然折叠电荷分布中作用的进一步考量,我们对一组21种类似天然构象的蛋白质中可电离残基的替代电荷分配模型进行了比较。这项工作的结果表明:(1)对于7种蛋白质中的6种,基于具有固定电荷分布的广义玻恩模型来估计溶剂极化,在准确性(相对于泊松方程)和速度(与可及表面积模型相比)之间提供了最佳平衡;对于第7种蛋白质,考虑整个分子的所有可能电离状态对于区分天然构象和非天然构象似乎至关重要;(2)在所研究的不同电荷模型之间,发现天然折叠的电离程度以及电荷分布存在显著差异;(3)天然状态的稳定性由所有能量成分的微妙平衡决定,并且(4)构象熵以及因此折叠的动力学,可能对成功的从头蛋白质折叠预测起关键作用。