Suppr超能文献

一种用于探索构象对蛋白质电喷雾电荷态分布影响的极简模型。

A minimalist model for exploring conformational effects on the electrospray charge state distribution of proteins.

作者信息

Konermann Lars

机构信息

Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.

出版信息

J Phys Chem B. 2007 Jun 14;111(23):6534-43. doi: 10.1021/jp070720t. Epub 2007 May 19.

Abstract

The electrospray ionization (ESI) charge state distribution of proteins is highly sensitive to the protein structure in solution. Unfolded conformations generally form higher charge states than tightly folded structures. The current study employs a minimalist molecular dynamics model for simulating the final stages of the ESI process in order to gain insights into the physical reasons underlying this empirical relationship. The protein is described as a string of 27 beads ("residues"), 9 of which are negatively charged and represent possible protonation sites. The unfolded state of this bead string is a random coil, whereas the native conformation adopts a compact fold. The ESI process is simulated by placing the protein inside a solvent droplet with a 2.5 nm radius consisting of 1600 Lennard-Jones particles. In addition, the droplet contains 14 protons which are modeled as highly mobile point charges. Disintegration of the droplet rapidly releases the protein into the gas phase, resulting in average charge states of 4.8+ and 7.4+ for the folded and unfolded conformation, respectively. The protonation probabilities of individual residues in the folded state reveal a characteristic pattern, with values ranging from 0.2 to 0.8. In contrast, the protonation probabilities of the unfolded protein are more uniform and cover the range from 0.8 to 1.0. The origin of these differences can be traced back to a combination of steric and electrostatic effects. Residues exhibiting a small accessible surface area are less likely to capture a proton, an effect that is exacerbated by partial electrostatic shielding from nearby positive residues. Conversely, sites that are sterically exposed are associated with electrostatic funnels that greatly increase the likelihood of protonation. Unfolding enhances the steric and electrostatic exposure of protonation sites, thereby causing the protein to capture a greater number of protons during the droplet disintegration process.

摘要

蛋白质的电喷雾电离(ESI)电荷态分布对溶液中的蛋白质结构高度敏感。未折叠构象通常比紧密折叠结构形成更高的电荷态。当前的研究采用一种极简分子动力学模型来模拟ESI过程的最后阶段,以便深入了解这种经验关系背后的物理原因。该蛋白质被描述为一串27个珠子(“残基”),其中9个带负电荷,代表可能的质子化位点。这个珠子串的未折叠状态是一个无规卷曲,而天然构象则采用紧密折叠。通过将蛋白质置于一个半径为2.5 nm、由1600个 Lennard-Jones 粒子组成的溶剂液滴中来模拟ESI过程。此外,液滴中含有14个质子,被建模为高度移动的点电荷。液滴的崩解迅速将蛋白质释放到气相中,导致折叠和未折叠构象的平均电荷态分别为4.8+和7.4+。折叠状态下各个残基的质子化概率呈现出一种特征模式,值范围为0.2至0.8。相比之下,未折叠蛋白质的质子化概率更为均匀,范围为0.8至1.0。这些差异的根源可以追溯到空间位阻和静电效应的综合作用。可及表面积小的残基捕获质子的可能性较小,附近带正电残基的部分静电屏蔽会加剧这种效应。相反,空间位阻暴露的位点与静电漏斗相关联,这大大增加了质子化的可能性。展开增强了质子化位点的空间位阻和静电暴露,从而使蛋白质在液滴崩解过程中捕获更多的质子。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验