Suppr超能文献

嗅觉型环核苷酸门控通道的激活具有高度协同性。

Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative.

作者信息

Nache Vasilica, Schulz Eckhard, Zimmer Thomas, Kusch Jana, Biskup Christoph, Koopmann Rolf, Hagen Volker, Benndorf Klaus

机构信息

Institut für Physiologie II, Friedrich-Schiller-Universität Jena, Germany.

出版信息

J Physiol. 2005 Nov 15;569(Pt 1):91-102. doi: 10.1113/jphysiol.2005.092304. Epub 2005 Aug 4.

Abstract

Cyclic nucleotide-gated (CNG) ion channels play a key role in the sensory transduction of vision and olfaction. The channels are opened by the binding of cyclic nucleotides. Native olfactory CNG channels are heterotetramers of CNGA2, CNGA4, and CNGB1b subunits. Upon heterologous expression, only CNGA2 subunits can form functional homotetrameric channels. It is presently not known how the binding of the ligands to the four subunits is translated to channel opening. We studied activation of olfactory CNG channels by photolysis-induced jumps of cGMP or cAMP, two cyclic nucleotides with markedly different apparent affinity. It is shown that at equal degree of activation, the activation time course of homotetrameric channels is similar with cGMP and cAMP and it is also similar in homo- and heterotetrameric channels with the same cyclic nucleotide. Kinetic models were globally fitted to activation time courses of homotetrameric channels. While all models containing equivalent binding sites failed, a model containing three binding sites with a ligand affinity high-low-high described the data adequately. Only the second binding step switches from a very low to a very high open probability. We propose a unique gating mechanism for homotetrameric and heterotetrameric channels that involves only three highly cooperative binding steps.

摘要

环核苷酸门控(CNG)离子通道在视觉和嗅觉的感觉转导中起关键作用。这些通道通过环核苷酸的结合而打开。天然嗅觉CNG通道是CNGA2、CNGA4和CNGB1b亚基的异源四聚体。在异源表达时,只有CNGA2亚基能形成功能性的同型四聚体通道。目前尚不清楚配体与四个亚基的结合是如何转化为通道开放的。我们通过光解诱导的cGMP或cAMP(两种具有明显不同表观亲和力的环核苷酸)的跃迁来研究嗅觉CNG通道的激活。结果表明,在相同激活程度下,同型四聚体通道的激活时间进程在cGMP和cAMP作用下相似,并且在具有相同环核苷酸的同型和异型四聚体通道中也相似。动力学模型被全局拟合到同型四聚体通道的激活时间进程。虽然所有包含等效结合位点的模型都失败了,但一个包含三个具有高-低-高配体亲和力的结合位点的模型能够充分描述数据。只有第二个结合步骤从非常低的开放概率切换到非常高的开放概率。我们提出了一种独特的同型和异型四聚体通道门控机制,该机制仅涉及三个高度协同的结合步骤。

相似文献

1
Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative.
J Physiol. 2005 Nov 15;569(Pt 1):91-102. doi: 10.1113/jphysiol.2005.092304. Epub 2005 Aug 4.
2
Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
Sci Rep. 2016 Jul 11;6:29378. doi: 10.1038/srep29378.
3
Activation of olfactory cyclic-nucleotide gated channels revisited.
J Physiol. 2005 Nov 15;569(Pt 1):4-5. doi: 10.1113/jphysiol.2005.096602. Epub 2005 Aug 18.
5
Relating ligand binding to activation gating in CNGA2 channels.
Nature. 2007 Mar 22;446(7134):440-3. doi: 10.1038/nature05596. Epub 2007 Feb 25.
6
Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps.
Biophys J. 2006 May 1;90(9):3146-54. doi: 10.1529/biophysj.105.078667. Epub 2006 Feb 10.
7
All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels.
J Gen Physiol. 2004 May;123(5):521-31. doi: 10.1085/jgp.200409011. Epub 2004 Apr 12.
8
Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels.
J Physiol. 2004 Nov 1;560(Pt 3):605-16. doi: 10.1113/jphysiol.2004.070193. Epub 2004 Aug 12.
9
Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels.
J Gen Physiol. 1999 May;113(5):601-20. doi: 10.1085/jgp.113.5.601.
10
Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
Biophys J. 2002 Dec;83(6):3283-95. doi: 10.1016/S0006-3495(02)75329-0.

引用本文的文献

1
Anisotropic Network Analysis of Open/Closed HCN4 Channel Advocates Asymmetric Subunit Cooperativity in cAMP Modulation of Gating.
J Chem Inf Model. 2024 Jun 24;64(12):4727-4738. doi: 10.1021/acs.jcim.4c00360. Epub 2024 Jun 3.
2
Structural basis of properties, mechanisms, and channelopathy of cyclic nucleotide-gated channels.
Channels (Austin). 2023 Dec;17(1):2273165. doi: 10.1080/19336950.2023.2273165. Epub 2023 Oct 31.
4
Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels.
PLoS Comput Biol. 2022 Aug 23;18(8):e1010376. doi: 10.1371/journal.pcbi.1010376. eCollection 2022 Aug.
5
Ion Channel-Based Reporters for cAMP Detection.
Methods Mol Biol. 2022;2483:265-279. doi: 10.1007/978-1-0716-2245-2_17.
6
Enlightening activation gating in P2X receptors.
Purinergic Signal. 2022 Jun;18(2):177-191. doi: 10.1007/s11302-022-09850-w. Epub 2022 Feb 21.
7
Thermodynamic profile of mutual subunit control in a heteromeric receptor.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2100469118.
8
The cyclic AMP signaling pathway in the rodent main olfactory system.
Cell Tissue Res. 2021 Jan;383(1):429-443. doi: 10.1007/s00441-020-03391-7. Epub 2021 Jan 15.
9
Unravelling the intricate cooperativity of subunit gating in P2X2 ion channels.
Sci Rep. 2020 Dec 10;10(1):21751. doi: 10.1038/s41598-020-78672-w.
10
Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels.
Channels (Austin). 2019 Dec;13(1):382-399. doi: 10.1080/19336950.2019.1666456.

本文引用的文献

1
Structural basis of ligand activation in a cyclic nucleotide regulated potassium channel.
Cell. 2004 Nov 24;119(5):615-27. doi: 10.1016/j.cell.2004.10.030.
2
Calmodulin permanently associates with rat olfactory CNG channels under native conditions.
Nat Neurosci. 2004 Jul;7(7):705-10. doi: 10.1038/nn1266. Epub 2004 Jun 13.
3
Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels.
Neuron. 2004 May 13;42(3):411-21. doi: 10.1016/s0896-6273(04)00253-3.
4
ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL.
J Mol Biol. 1965 May;12:88-118. doi: 10.1016/s0022-2836(65)80285-6.
5
Structural basis for modulation and agonist specificity of HCN pacemaker channels.
Nature. 2003 Sep 11;425(6954):200-5. doi: 10.1038/nature01922.
6
The principle of gating charge movement in a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):42-8. doi: 10.1038/nature01581.
7
X-ray structure of a voltage-dependent K+ channel.
Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580.
8
The voltage-gated potassium channels and their relatives.
Nature. 2002 Sep 5;419(6902):35-42. doi: 10.1038/nature00978.
9
Cyclic nucleotide-gated ion channels.
Physiol Rev. 2002 Jul;82(3):769-824. doi: 10.1152/physrev.00008.2002.
10
Facilitation of calmodulin-mediated odor adaptation by cAMP-gated channel subunits.
Science. 2001 Dec 7;294(5549):2176-8. doi: 10.1126/science.1063415.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验