Suppr超能文献

通过环磷酸鸟苷(cGMP)跳跃和去极化电压阶跃对环核苷酸门控(CNGA1)通道进行门控。

Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps.

作者信息

Nache Vasilica, Kusch Jana, Hagen Volker, Benndorf Klaus

机构信息

Institut für Physiologie II, Friedrich-Schiller-Universität Jena, Jena, Germany.

出版信息

Biophys J. 2006 May 1;90(9):3146-54. doi: 10.1529/biophysj.105.078667. Epub 2006 Feb 10.

Abstract

We expressed rod-type homotetrameric cyclic nucleotide-gated (CNGA1) channels in Xenopus oocytes and studied activation by photolysis-induced jumps of the 3',5'-cyclic guanosine monophosphate (cGMP) concentration and by voltage steps. cGMP jumps to increasing concentrations up to the EC50 value of 46.5 microM decelerate the activation gating, indicative that even at concentrations of cGMP << EC50 binding is not rate limiting. Above the EC50 value, activation by cGMP jumps is again accelerated to the higher concentrations. At the same cGMP concentration, the speed of the activation gating by depolarizing voltage steps is roughly similar to that by cGMP jumps. Permeating ions passing the pore more slowly (Rb+ > K+ > Na+) slow down the activation time course. At the single-channel level, cGMP jumps to high concentrations cause openings directly to the main open level without passing sublevels. From these results it is concluded that at both low and high cGMP the gating of homotetrameric CNGA1 channels is not rate-limited by the cGMP binding but by conformational changes of the channel which are voltage dependent and include movements in the pore region.

摘要

我们在非洲爪蟾卵母细胞中表达了杆状同源四聚体环核苷酸门控(CNGA1)通道,并通过光解诱导的3',5'-环磷酸鸟苷(cGMP)浓度跃变和电压阶跃研究了其激活情况。cGMP跃升至高达46.5 microM的EC50值时,激活门控会减速,这表明即使在cGMP浓度远低于EC50时,结合也不是限速步骤。在EC50值以上,cGMP跃变引起的激活在更高浓度时又会加速。在相同的cGMP浓度下,去极化电压阶跃引起的激活门控速度与cGMP跃变引起的大致相似。透过孔道较慢的渗透离子(Rb+ > K+ > Na+)会减慢激活时间进程。在单通道水平上,cGMP跃升至高浓度会直接使通道开放至主要开放水平,而不经过亚水平。从这些结果可以得出结论,在低cGMP和高cGMP时,同源四聚体CNGA1通道的门控都不是由cGMP结合限速的,而是由通道的构象变化限速,这些构象变化是电压依赖性的,包括孔区域的运动。

相似文献

1
Gating of cyclic nucleotide-gated (CNGA1) channels by cGMP jumps and depolarizing voltage steps.
Biophys J. 2006 May 1;90(9):3146-54. doi: 10.1529/biophysj.105.078667. Epub 2006 Feb 10.
3
Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels.
J Physiol. 2004 Nov 1;560(Pt 3):605-16. doi: 10.1113/jphysiol.2004.070193. Epub 2004 Aug 12.
4
All-trans-retinal is a closed-state inhibitor of rod cyclic nucleotide-gated ion channels.
J Gen Physiol. 2004 May;123(5):521-31. doi: 10.1085/jgp.200409011. Epub 2004 Apr 12.
6
Mechanism of allosteric modulation of rod cyclic nucleotide-gated channels.
J Gen Physiol. 1999 May;113(5):601-20. doi: 10.1085/jgp.113.5.601.
7
Mutations reveal voltage gating of CNGA1 channels in saturating cGMP.
J Gen Physiol. 2009 Aug;134(2):151-64. doi: 10.1085/jgp.200910240.
8
Movement of the C-helix during the gating of cyclic nucleotide-gated channels.
Biophys J. 2002 Dec;83(6):3283-95. doi: 10.1016/S0006-3495(02)75329-0.
9
Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels.
Biophys J. 1998 Aug;75(2):825-33. doi: 10.1016/s0006-3495(98)77571-x.
10
Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative.
J Physiol. 2005 Nov 15;569(Pt 1):91-102. doi: 10.1113/jphysiol.2005.092304. Epub 2005 Aug 4.

引用本文的文献

1
Reverse Engineering Caged Compounds: Design Principles for their Application in Biology.
Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202206083. doi: 10.1002/anie.202206083. Epub 2023 Jan 16.
2
Subunit promotion energies for channel opening in heterotetrameric olfactory CNG channels.
PLoS Comput Biol. 2022 Aug 23;18(8):e1010376. doi: 10.1371/journal.pcbi.1010376. eCollection 2022 Aug.
3
CNG channel structure, function, and gating: a tale of conformational flexibility.
Pflugers Arch. 2021 Sep;473(9):1423-1435. doi: 10.1007/s00424-021-02610-6. Epub 2021 Aug 6.
5
Ligand binding and activation properties of the purified bacterial cyclic nucleotide-gated channel SthK.
J Gen Physiol. 2018 Jun 4;150(6):821-834. doi: 10.1085/jgp.201812023. Epub 2018 May 11.
6
Proton transfer unlocks inactivation in cyclic nucleotide-gated A1 channels.
J Physiol. 2015 Feb 15;593(4):857-70. doi: 10.1113/jphysiol.2014.284216. Epub 2015 Jan 7.
7
Multiple mechanisms underlying rectification in retinal cyclic nucleotide-gated (CNGA1) channels.
Physiol Rep. 2013 Nov;1(6):e00148. doi: 10.1002/phy2.148. Epub 2013 Nov 22.
8
Mutations reveal voltage gating of CNGA1 channels in saturating cGMP.
J Gen Physiol. 2009 Aug;134(2):151-64. doi: 10.1085/jgp.200910240.

本文引用的文献

2
Activation of olfactory-type cyclic nucleotide-gated channels is highly cooperative.
J Physiol. 2005 Nov 15;569(Pt 1):91-102. doi: 10.1113/jphysiol.2005.092304. Epub 2005 Aug 4.
3
Effects of permeating ions and cGMP on gating and conductance of rod-type cyclic nucleotide-gated (CNGA1) channels.
J Physiol. 2004 Nov 1;560(Pt 3):605-16. doi: 10.1113/jphysiol.2004.070193. Epub 2004 Aug 12.
4
Molecular basis of an inherited form of incomplete achromatopsia.
J Neurosci. 2004 Jan 7;24(1):138-47. doi: 10.1523/JNEUROSCI.3883-03.2004.
5
Influence of permeant ions on gating in cyclic nucleotide-gated channels.
J Gen Physiol. 2003 Jan;121(1):61-72. doi: 10.1085/jgp.20028722.
6
Subunit stoichiometry of the CNG channel of rod photoreceptors.
Neuron. 2002 Dec 5;36(5):881-9. doi: 10.1016/s0896-6273(02)01098-x.
7
The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry.
Nature. 2002 Nov 14;420(6912):193-8. doi: 10.1038/nature01201.
8
Cyclic nucleotide-gated ion channels.
Physiol Rev. 2002 Jul;82(3):769-824. doi: 10.1152/physrev.00008.2002.
9
Conformational changes in S6 coupled to the opening of cyclic nucleotide-gated channels.
Neuron. 2001 Jun;30(3):689-98. doi: 10.1016/s0896-6273(01)00324-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验