Cafaro Valeria, Notomista Eugenio, Capasso Paola, Di Donato Alberto
Dipartimento di Biologia strutturale e funzionale, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
Appl Environ Microbiol. 2005 Aug;71(8):4744-50. doi: 10.1128/AEM.71.8.4744-4750.2005.
Toluene o-xylene monooxygenase (ToMO) and phenol hydroxylase (PH) of Pseudomonas stutzeri OX1 act sequentially in a recombinant upper pathway for the degradation of aromatic hydrocarbons. The catalytic efficiency and regioselectivity of these enzymes optimize the degradation of growth substrates like toluene and o-xylene. For example, the sequential monooxygenation of o-xylene by ToMO and PH leads to almost exclusive production of 3,4-dimethylcatechol (3,4-DMC), the only isomer that can be further metabolized by the P. stutzeri meta pathway. We investigated the possibility of producing ToMO mutants with modified regioselectivity compared with the regioselectivity of the wild-type protein in order to alter the ability of the recombinant upper pathway to produce methylcatechol isomers from toluene and to produce 3,4-DMC from o-xylene. The combination of mutant (E103G)-ToMO and PH increased the production of 4-methylcatechol from toluene and increased the formation of 3,4-DMC from o-xylene. These data strongly support the idea that the products and efficiency of the metabolic pathway can be controlled not only through mutations that increase the catalytic efficiency of the enzymes involved but also through tuning the substrate specificity and regioselectivity of the enzymes. These findings are crucial for the development of future metabolic engineering strategies.
施氏假单胞菌OX1的甲苯邻二甲苯单加氧酶(ToMO)和苯酚羟化酶(PH)在一条用于降解芳香烃的重组上游途径中依次发挥作用。这些酶的催化效率和区域选择性优化了甲苯和邻二甲苯等生长底物的降解。例如,ToMO和PH对邻二甲苯的顺序单加氧作用几乎只产生3,4 - 二甲基邻苯二酚(3,4 - DMC),这是唯一能被施氏假单胞菌间位途径进一步代谢的异构体。我们研究了与野生型蛋白的区域选择性相比,产生具有修饰区域选择性的ToMO突变体的可能性,以改变重组上游途径从甲苯产生甲基邻苯二酚异构体以及从邻二甲苯产生3,4 - DMC的能力。突变体(E103G)- ToMO和PH的组合增加了甲苯生成4 - 甲基邻苯二酚的产量,并增加了邻二甲苯生成3,4 - DMC的量。这些数据有力地支持了这样一种观点,即代谢途径的产物和效率不仅可以通过提高相关酶催化效率的突变来控制,还可以通过调节酶的底物特异性和区域选择性来控制。这些发现对于未来代谢工程策略的发展至关重要。