Suppr超能文献

来自施氏假单胞菌OX1的甲苯-邻二甲苯单加氧酶的蛋白质工程,用于合成4-甲基间苯二酚、甲基对苯二酚和连苯三酚。

Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol.

作者信息

Vardar Gönül, Wood Thomas K

机构信息

Department of Chemical Engineering, University of Connecticut, Storrs, 06269-3222, USA.

出版信息

Appl Environ Microbiol. 2004 Jun;70(6):3253-62. doi: 10.1128/AEM.70.6.3253-3262.2004.

Abstract

Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-methylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, and F205 were used to generate random mutants. The mutants were initially identified by screening with a rapid agar plate assay and then were examined further by high-performance liquid chromatography and gas chromatography. Several regiospecific mutants with high rates of activity were identified; for example, Escherichia coli TG1/pBS(Kan)ToMO expressing the F205G TouA saturation mutagenesis variant formed 4-methylresorcinol (0.78 nmol/min/mg of protein), 3-methylcatechol (0.25 nmol/min/mg of protein), and methylhydroquinone (0.088 nmol/min/mg of protein) from o-cresol, whereas wild-type ToMO formed only 3-methylcatechol (1.1 nmol/min/mg of protein). From o-cresol, the I100Q saturation mutagenesis mutant and the M180T/E284G DNA shuffling mutant formed methylhydroquinone (0.50 and 0.19 nmol/min/mg of protein, respectively) and 3-methylcatechol (0.49 and 1.5 nmol/min/mg of protein, respectively). The F205G mutant formed catechol (0.52 nmol/min/mg of protein), resorcinol (0.090 nmol/min/mg of protein), and hydroquinone (0.070 nmol/min/mg of protein) from phenol, whereas wild-type ToMO formed only catechol (1.5 nmol/min/mg of protein). Both the I100Q mutant and the M180T/E284G mutant formed hydroquinone (1.2 and 0.040 nmol/min/mg of protein, respectively) and catechol (0.28 and 2.0 nmol/min/mg of protein, respectively) from phenol. Dihydroxybenzenes were further oxidized to trihydroxybenzenes with different regiospecificities; for example, the I100Q mutant formed 1,2,4-THB from catechol, whereas wild-type ToMO formed 1,2,3-THB (pyrogallol). Regiospecific oxidation of the natural substrate toluene was also checked; for example, the I100Q mutant formed 22% o-cresol, 44% m-cresol, and 34% p-cresol, whereas wild-type ToMO formed 32% o-cresol, 21% m-cresol, and 47% p-cresol.

摘要

来自施氏假单胞菌OX1的甲苯-邻二甲苯单加氧酶(ToMO)可将甲苯氧化为3-和4-甲基邻苯二酚,并将苯氧化生成苯酚;在本研究中,发现ToMO还可将苯酚转化为邻苯二酚和1,2,3-三羟基苯(1,2,3-THB)。为了合成新型的苯和甲苯二羟基及三羟基衍生物,对ToMO的α-羟化酶片段(TouA)进行DNA改组,并对TouA活性位点残基I100、Q141、T201和F205进行饱和诱变以产生随机突变体。这些突变体首先通过快速琼脂平板试验进行筛选鉴定,然后再通过高效液相色谱和气相色谱进一步检测。鉴定出了几个具有高活性的区域特异性突变体;例如,表达F205G TouA饱和诱变变体的大肠杆菌TG1/pBS(Kan)ToMO从邻甲酚生成4-甲基间苯二酚(0.78 nmol/分钟/毫克蛋白质)、3-甲基邻苯二酚(0.25 nmol/分钟/毫克蛋白质)和甲基对苯二酚(0.088 nmol/分钟/毫克蛋白质),而野生型ToMO仅生成3-甲基邻苯二酚(1.1 nmol/分钟/毫克蛋白质)。从邻甲酚出发,I100Q饱和诱变突变体和M180T/E284G DNA改组突变体分别生成甲基对苯二酚(0.50和0.19 nmol/分钟/毫克蛋白质)和3-甲基邻苯二酚(0.49和1.5 nmol/分钟/毫克蛋白质)。F205G突变体从苯酚生成邻苯二酚(0.52 nmol/分钟/毫克蛋白质)、间苯二酚(0.090 nmol/分钟/毫克蛋白质)和对苯二酚(0.070 nmol/分钟/毫克蛋白质),而野生型ToMO仅生成邻苯二酚(1.5 nmol/分钟/毫克蛋白质)。I100Q突变体和M180T/E284G突变体从苯酚分别生成对苯二酚(1.2和0.040 nmol/分钟/毫克蛋白质)和邻苯二酚(0.28和2.0 nmol/分钟/毫克蛋白质)。二羟基苯进一步被氧化为具有不同区域特异性的三羟基苯;例如,I100Q突变体从邻苯二酚生成1,2,4-THB,而野生型ToMO生成1,2,3-THB(连苯三酚)。还检测了天然底物甲苯的区域特异性氧化;例如,I100Q突变体生成22%的邻甲酚、44%的间甲酚和34%的对甲酚,而野生型ToMO生成32%的邻甲酚、21%的间甲酚和47%的对甲酚。

相似文献

引用本文的文献

1
Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases.
Environ Microbiol. 2025 Feb;27(2):e70050. doi: 10.1111/1462-2920.70050.
2
Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes.
Microorganisms. 2024 Sep 2;12(9):1814. doi: 10.3390/microorganisms12091814.
3
A multicomponent propane monooxygenase catalyzes the initial degradation of methyl -butyl ether in JOB5.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0118723. doi: 10.1128/aem.01187-23. Epub 2023 Oct 12.
5
Low-dosage ozonation in gas-phase biofilter promotes community diversity and robustness.
Microbiome. 2021 Jan 12;9(1):14. doi: 10.1186/s40168-020-00944-4.
8
Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions.
Microbes Environ. 2017 Sep 27;32(3):188-200. doi: 10.1264/jsme2.ME16188. Epub 2017 Sep 12.
9
The Toluene o-Xylene Monooxygenase Enzymatic Activity for the Biosynthesis of Aromatic Antioxidants.
PLoS One. 2015 Apr 27;10(4):e0124427. doi: 10.1371/journal.pone.0124427. eCollection 2015.
10
YeeO from Escherichia coli exports flavins.
Bioengineered. 2014;5(6):386-92. doi: 10.4161/21655979.2014.969173. Epub 2014 Nov 11.

本文引用的文献

3
SWISS-MODEL: An automated protein homology-modeling server.
Nucleic Acids Res. 2003 Jul 1;31(13):3381-5. doi: 10.1093/nar/gkg520.
4
Practical issues in the application of oxygenases.
Trends Biotechnol. 2003 Apr;21(4):170-7. doi: 10.1016/S0167-7799(03)00032-5.
7
Changing the substrate reactivity of 2-hydroxybiphenyl 3-monooxygenase from Pseudomonas azelaica HBP1 by directed evolution.
J Biol Chem. 2002 Feb 15;277(7):5575-82. doi: 10.1074/jbc.M110018200. Epub 2001 Dec 3.
8
Laboratory evolution of toluene dioxygenase to accept 4-picoline as a substrate.
Appl Environ Microbiol. 2001 Sep;67(9):3882-7. doi: 10.1128/AEM.67.9.3882-3887.2001.
10
Threonine 201 in the diiron enzyme toluene 4-monooxygenase is not required for catalysis.
Biochemistry. 2000 Feb 1;39(4):791-9. doi: 10.1021/bi992187g.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验