Vardar Gönül, Wood Thomas K
Department of Chemical Engineering, University of Connecticut, Storrs, 06269-3222, USA.
Appl Environ Microbiol. 2004 Jun;70(6):3253-62. doi: 10.1128/AEM.70.6.3253-3262.2004.
Toluene-o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1 oxidizes toluene to 3- and 4-methylcatechol and oxidizes benzene to form phenol; in this study ToMO was found to also form catechol and 1,2,3-trihydroxybenzene (1,2,3-THB) from phenol. To synthesize novel dihydroxy and trihydroxy derivatives of benzene and toluene, DNA shuffling of the alpha-hydroxylase fragment of ToMO (TouA) and saturation mutagenesis of the TouA active site residues I100, Q141, T201, and F205 were used to generate random mutants. The mutants were initially identified by screening with a rapid agar plate assay and then were examined further by high-performance liquid chromatography and gas chromatography. Several regiospecific mutants with high rates of activity were identified; for example, Escherichia coli TG1/pBS(Kan)ToMO expressing the F205G TouA saturation mutagenesis variant formed 4-methylresorcinol (0.78 nmol/min/mg of protein), 3-methylcatechol (0.25 nmol/min/mg of protein), and methylhydroquinone (0.088 nmol/min/mg of protein) from o-cresol, whereas wild-type ToMO formed only 3-methylcatechol (1.1 nmol/min/mg of protein). From o-cresol, the I100Q saturation mutagenesis mutant and the M180T/E284G DNA shuffling mutant formed methylhydroquinone (0.50 and 0.19 nmol/min/mg of protein, respectively) and 3-methylcatechol (0.49 and 1.5 nmol/min/mg of protein, respectively). The F205G mutant formed catechol (0.52 nmol/min/mg of protein), resorcinol (0.090 nmol/min/mg of protein), and hydroquinone (0.070 nmol/min/mg of protein) from phenol, whereas wild-type ToMO formed only catechol (1.5 nmol/min/mg of protein). Both the I100Q mutant and the M180T/E284G mutant formed hydroquinone (1.2 and 0.040 nmol/min/mg of protein, respectively) and catechol (0.28 and 2.0 nmol/min/mg of protein, respectively) from phenol. Dihydroxybenzenes were further oxidized to trihydroxybenzenes with different regiospecificities; for example, the I100Q mutant formed 1,2,4-THB from catechol, whereas wild-type ToMO formed 1,2,3-THB (pyrogallol). Regiospecific oxidation of the natural substrate toluene was also checked; for example, the I100Q mutant formed 22% o-cresol, 44% m-cresol, and 34% p-cresol, whereas wild-type ToMO formed 32% o-cresol, 21% m-cresol, and 47% p-cresol.
来自施氏假单胞菌OX1的甲苯-邻二甲苯单加氧酶(ToMO)可将甲苯氧化为3-和4-甲基邻苯二酚,并将苯氧化生成苯酚;在本研究中,发现ToMO还可将苯酚转化为邻苯二酚和1,2,3-三羟基苯(1,2,3-THB)。为了合成新型的苯和甲苯二羟基及三羟基衍生物,对ToMO的α-羟化酶片段(TouA)进行DNA改组,并对TouA活性位点残基I100、Q141、T201和F205进行饱和诱变以产生随机突变体。这些突变体首先通过快速琼脂平板试验进行筛选鉴定,然后再通过高效液相色谱和气相色谱进一步检测。鉴定出了几个具有高活性的区域特异性突变体;例如,表达F205G TouA饱和诱变变体的大肠杆菌TG1/pBS(Kan)ToMO从邻甲酚生成4-甲基间苯二酚(0.78 nmol/分钟/毫克蛋白质)、3-甲基邻苯二酚(0.25 nmol/分钟/毫克蛋白质)和甲基对苯二酚(0.088 nmol/分钟/毫克蛋白质),而野生型ToMO仅生成3-甲基邻苯二酚(1.1 nmol/分钟/毫克蛋白质)。从邻甲酚出发,I100Q饱和诱变突变体和M180T/E284G DNA改组突变体分别生成甲基对苯二酚(0.50和0.19 nmol/分钟/毫克蛋白质)和3-甲基邻苯二酚(0.49和1.5 nmol/分钟/毫克蛋白质)。F205G突变体从苯酚生成邻苯二酚(0.52 nmol/分钟/毫克蛋白质)、间苯二酚(0.090 nmol/分钟/毫克蛋白质)和对苯二酚(0.070 nmol/分钟/毫克蛋白质),而野生型ToMO仅生成邻苯二酚(1.5 nmol/分钟/毫克蛋白质)。I100Q突变体和M180T/E284G突变体从苯酚分别生成对苯二酚(1.2和0.040 nmol/分钟/毫克蛋白质)和邻苯二酚(0.28和2.0 nmol/分钟/毫克蛋白质)。二羟基苯进一步被氧化为具有不同区域特异性的三羟基苯;例如,I100Q突变体从邻苯二酚生成1,2,4-THB,而野生型ToMO生成1,2,3-THB(连苯三酚)。还检测了天然底物甲苯的区域特异性氧化;例如,I100Q突变体生成22%的邻甲酚、44%的间甲酚和34%的对甲酚,而野生型ToMO生成32%的邻甲酚、21%的间甲酚和47%的对甲酚。