Notomista Eugenio, Cafaro Valeria, Bozza Giuseppe, Di Donato Alberto
Dipartimento di Biologia Strutturale e Funzionale, Universitá di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Naples, Italy.
Appl Environ Microbiol. 2009 Feb;75(3):823-36. doi: 10.1128/AEM.01951-08. Epub 2008 Dec 12.
Bacterial multicomponent monooxygenases (BMMs) are a heterogeneous family of di-iron monooxygenases which share the very interesting ability to hydroxylate aliphatic and/or aromatic hydrocarbons. Each BMM possesses defined substrate specificity and regioselectivity which match the metabolic requirements of the strain from which it has been isolated. Pseudomonas sp. strain OX1, a strain able to metabolize o-, m-, and p-cresols, produces the BMM toluene/o-xylene monooxygenase (ToMO), which converts toluene to a mixture of o-, m-, and p-cresol isomers. In order to investigate the molecular determinants of ToMO regioselectivity, we prepared and characterized 15 single-mutant and 3 double-mutant forms of the ToMO active site pocket. Using the Monte Carlo approach, we prepared models of ToMO-substrate and ToMO-reaction intermediate complexes which allowed us to provide a molecular explanation for the regioselectivities of wild-type and mutant ToMO enzymes. Furthermore, using binding energy values calculated by energy analyses of the complexes and a simple mathematical model of the hydroxylation reaction, we were able to predict quantitatively the regioselectivities of the majority of the variant proteins with good accuracy. The results show not only that the fine-tuning of ToMO regioselectivity can be achieved through a careful alteration of the shape of the active site but also that the effects of the mutations on regioselectivity can be quantitatively predicted a priori.
细菌多组分单加氧酶(BMMs)是二铁单加氧酶的一个异质家族,它们具有将脂肪族和/或芳香族烃羟基化的有趣能力。每种BMM都具有明确的底物特异性和区域选择性,这与分离出它的菌株的代谢需求相匹配。假单胞菌属OX1菌株能够代谢邻、间、对甲酚,它产生BMM甲苯/邻二甲苯单加氧酶(ToMO),该酶将甲苯转化为邻、间、对甲酚异构体的混合物。为了研究ToMO区域选择性的分子决定因素,我们制备并表征了ToMO活性位点口袋的15种单突变体和3种双突变体形式。使用蒙特卡罗方法,我们制备了ToMO-底物和ToMO-反应中间体复合物的模型,这使我们能够对野生型和突变型ToMO酶的区域选择性提供分子解释。此外,利用通过复合物能量分析计算的结合能值和羟基化反应的简单数学模型,我们能够以良好的准确性定量预测大多数变体蛋白的区域选择性。结果表明,不仅可以通过仔细改变活性位点的形状来实现ToMO区域选择性的微调,而且突变对区域选择性的影响可以事先进行定量预测。