Corbino Keith A, Barrick Jeffrey E, Lim Jinsoo, Welz Rüdiger, Tucker Brian J, Puskarz Izabela, Mandal Maumita, Rudnick Noam D, Breaker Ronald R
Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.
Genome Biol. 2005;6(8):R70. doi: 10.1186/gb-2005-6-8-r70. Epub 2005 Aug 1.
Riboswitches are RNA elements in the 5' untranslated leaders of bacterial mRNAs that directly sense the levels of specific metabolites with a structurally conserved aptamer domain to regulate expression of downstream genes. Riboswitches are most common in the genomes of low GC Gram-positive bacteria (for example, Bacillus subtilis contains examples of all known riboswitches), and some riboswitch classes seem to be restricted to this group.
We used comparative sequence analysis and structural probing to identify five RNA elements (serC, speF, suhB, ybhL, and metA) that reside in the intergenic regions of Agrobacterium tumefaciens and many other alpha-proteobacteria. One of these, the metA motif, is found upstream of methionine biosynthesis genes and binds S-adenosylmethionine (SAM). This natural aptamer most likely functions as a SAM riboswitch (SAM-II) with a consensus sequence and structure that is distinct from the class of SAM riboswitches (SAM-I) predominantly found in Gram-positive bacteria. The minimal functional SAM-II aptamer consists of fewer than 70 nucleotides, which form a single stem and a pseudoknot. Despite its simple architecture and lower affinity for SAM, the SAM-II aptamer strongly discriminates against related compounds.
SAM-II is the only metabolite-binding riboswitch class identified so far that is not found in Gram-positive bacteria, and its existence demonstrates that biological systems can use multiple RNA structures to sense a single chemical compound. The two SAM riboswitches might be 'RNA World' relics that were selectively retained in certain bacterial lineages or new motifs that have emerged since the divergence of the major bacterial groups.
核糖开关是细菌信使核糖核酸(mRNA)5'非翻译前导区中的RNA元件,其通过结构保守的适体结构域直接感知特定代谢物的水平,从而调节下游基因的表达。核糖开关在低GC含量革兰氏阳性菌的基因组中最为常见(例如,枯草芽孢杆菌包含所有已知核糖开关的实例),并且某些核糖开关类别似乎仅限于这一群体。
我们使用比较序列分析和结构探测来鉴定五个存在于根癌土壤杆菌和许多其他α-变形菌基因间隔区的RNA元件(serC、speF、suhB、ybhL和metA)。其中一个,metA基序,位于甲硫氨酸生物合成基因的上游,并结合S-腺苷甲硫氨酸(SAM)。这个天然适体很可能作为一个SAM核糖开关(SAM-II)发挥作用,其共有序列和结构与主要在革兰氏阳性菌中发现的SAM核糖开关类别(SAM-I)不同。最小功能SAM-II适体由少于70个核苷酸组成,这些核苷酸形成一个单茎和一个假结。尽管其结构简单且对SAM的亲和力较低,但SAM-II适体对相关化合物有很强的区分能力。
SAM-II是迄今为止鉴定出的唯一一类在革兰氏阳性菌中未发现的与代谢物结合的核糖开关,其存在表明生物系统可以使用多种RNA结构来感知单一化合物。这两种SAM核糖开关可能是在某些细菌谱系中被选择性保留的“RNA世界”遗迹,或者是自主要细菌类群分化以来出现的新基序。