Suppr超能文献

α-变形菌纲中第二类S-腺苷甲硫氨酸核糖开关及其他调控RNA基序的证据。

Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria.

作者信息

Corbino Keith A, Barrick Jeffrey E, Lim Jinsoo, Welz Rüdiger, Tucker Brian J, Puskarz Izabela, Mandal Maumita, Rudnick Noam D, Breaker Ronald R

机构信息

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA.

出版信息

Genome Biol. 2005;6(8):R70. doi: 10.1186/gb-2005-6-8-r70. Epub 2005 Aug 1.

Abstract

BACKGROUND

Riboswitches are RNA elements in the 5' untranslated leaders of bacterial mRNAs that directly sense the levels of specific metabolites with a structurally conserved aptamer domain to regulate expression of downstream genes. Riboswitches are most common in the genomes of low GC Gram-positive bacteria (for example, Bacillus subtilis contains examples of all known riboswitches), and some riboswitch classes seem to be restricted to this group.

RESULTS

We used comparative sequence analysis and structural probing to identify five RNA elements (serC, speF, suhB, ybhL, and metA) that reside in the intergenic regions of Agrobacterium tumefaciens and many other alpha-proteobacteria. One of these, the metA motif, is found upstream of methionine biosynthesis genes and binds S-adenosylmethionine (SAM). This natural aptamer most likely functions as a SAM riboswitch (SAM-II) with a consensus sequence and structure that is distinct from the class of SAM riboswitches (SAM-I) predominantly found in Gram-positive bacteria. The minimal functional SAM-II aptamer consists of fewer than 70 nucleotides, which form a single stem and a pseudoknot. Despite its simple architecture and lower affinity for SAM, the SAM-II aptamer strongly discriminates against related compounds.

CONCLUSION

SAM-II is the only metabolite-binding riboswitch class identified so far that is not found in Gram-positive bacteria, and its existence demonstrates that biological systems can use multiple RNA structures to sense a single chemical compound. The two SAM riboswitches might be 'RNA World' relics that were selectively retained in certain bacterial lineages or new motifs that have emerged since the divergence of the major bacterial groups.

摘要

背景

核糖开关是细菌信使核糖核酸(mRNA)5'非翻译前导区中的RNA元件,其通过结构保守的适体结构域直接感知特定代谢物的水平,从而调节下游基因的表达。核糖开关在低GC含量革兰氏阳性菌的基因组中最为常见(例如,枯草芽孢杆菌包含所有已知核糖开关的实例),并且某些核糖开关类别似乎仅限于这一群体。

结果

我们使用比较序列分析和结构探测来鉴定五个存在于根癌土壤杆菌和许多其他α-变形菌基因间隔区的RNA元件(serC、speF、suhB、ybhL和metA)。其中一个,metA基序,位于甲硫氨酸生物合成基因的上游,并结合S-腺苷甲硫氨酸(SAM)。这个天然适体很可能作为一个SAM核糖开关(SAM-II)发挥作用,其共有序列和结构与主要在革兰氏阳性菌中发现的SAM核糖开关类别(SAM-I)不同。最小功能SAM-II适体由少于70个核苷酸组成,这些核苷酸形成一个单茎和一个假结。尽管其结构简单且对SAM的亲和力较低,但SAM-II适体对相关化合物有很强的区分能力。

结论

SAM-II是迄今为止鉴定出的唯一一类在革兰氏阳性菌中未发现的与代谢物结合的核糖开关,其存在表明生物系统可以使用多种RNA结构来感知单一化合物。这两种SAM核糖开关可能是在某些细菌谱系中被选择性保留的“RNA世界”遗迹,或者是自主要细菌类群分化以来出现的新基序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee3/1273637/511b4f30984a/gb-2005-6-8-r70-1.jpg

相似文献

2
A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria.
RNA. 2009 Nov;15(11):2046-56. doi: 10.1261/rna.1824209. Epub 2009 Sep 23.
3
Mix-and-match riboswitches.
ACS Chem Biol. 2006 Dec 15;1(12):751-4. doi: 10.1021/cb600458w.
4
Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine.
Biochem Cell Biol. 2008 Apr;86(2):157-68. doi: 10.1139/O08-008.
5
SAM-VI RNAs selectively bind S-adenosylmethionine and exhibit similarities to SAM-III riboswitches.
RNA Biol. 2018 Mar 4;15(3):371-378. doi: 10.1080/15476286.2017.1399232. Epub 2018 Feb 12.
6
Structural basis for diversity in the SAM clan of riboswitches.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6624-9. doi: 10.1073/pnas.1312918111. Epub 2014 Apr 21.
7
The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches.
RNA. 2008 May;14(5):822-8. doi: 10.1261/rna.988608. Epub 2008 Mar 27.
9
Application of fluorescent measurements for characterization of riboswitch-ligand interactions.
Methods Mol Biol. 2009;540:25-37. doi: 10.1007/978-1-59745-558-9_3.
10
Folding of the SAM aptamer is determined by the formation of a K-turn-dependent pseudoknot.
Biochemistry. 2008 Feb 12;47(6):1490-9. doi: 10.1021/bi701164y. Epub 2008 Jan 19.

引用本文的文献

1
Implications for OLE RNA as a natural integral membrane RNA.
RNA. 2025 May 20. doi: 10.1261/rna.080489.125.
2
Evidence that ribosomal protein bS21 is a component of the OLE ribonucleoprotein complex.
RNA Biol. 2025 Dec;22(1):1-14. doi: 10.1080/15476286.2025.2491842. Epub 2025 May 5.
3
Structure and catalytic activity of the SAM-utilizing ribozyme SAMURI.
Nat Chem Biol. 2025 Jan 8. doi: 10.1038/s41589-024-01808-w.
4
Linker-Mediated Inactivation of the SAM-II Domain in the Tandem SAM-II/SAM-V Riboswitch.
Int J Mol Sci. 2024 Oct 20;25(20):11288. doi: 10.3390/ijms252011288.
5
The Role of General Acid Catalysis in the Mechanism of an Alkyl Transferase Ribozyme.
ACS Catal. 2024 Oct 2;14(20):15294-15305. doi: 10.1021/acscatal.4c04571. eCollection 2024 Oct 18.
6
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
7
SAM-VI Riboswitch Conformation Change Requires Peripheral Helix Formation.
Biomolecules. 2024 Jun 23;14(7):742. doi: 10.3390/biom14070742.
8
A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.
Cell Rep. 2023 Dec 26;42(12):113571. doi: 10.1016/j.celrep.2023.113571. Epub 2023 Dec 12.
9
Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
Commun Biol. 2023 Jul 31;6(1):791. doi: 10.1038/s42003-023-05175-5.
10
Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level.
Nucleic Acids Res. 2023 Sep 22;51(17):8957-8969. doi: 10.1093/nar/gkad633.

本文引用的文献

1
The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch.
Mol Cell. 2005 Apr 1;18(1):49-60. doi: 10.1016/j.molcel.2005.02.032.
2
An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs.
Proc Natl Acad Sci U S A. 2005 Feb 1;102(5):1372-7. doi: 10.1073/pnas.0406347102. Epub 2005 Jan 21.
3
Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41. doi: 10.1016/j.chembiol.2004.11.018.
4
A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
Science. 2004 Oct 8;306(5694):275-9. doi: 10.1126/science.1100829.
5
Exploiting conserved structure for faster annotation of non-coding RNAs without loss of accuracy.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i334-41. doi: 10.1093/bioinformatics/bth925.
6
A small aptamer with strong and specific recognition of the triphosphate of ATP.
J Am Chem Soc. 2004 Jul 14;126(27):8370-1. doi: 10.1021/ja049171k.
7
Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems.
Nucleic Acids Res. 2004 Jun 23;32(11):3340-53. doi: 10.1093/nar/gkh659. Print 2004.
8
Gene regulation by riboswitches.
Nat Rev Mol Cell Biol. 2004 Jun;5(6):451-63. doi: 10.1038/nrm1403.
9
Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis.
FEMS Microbiol Lett. 2004 May 15;234(2):357-70. doi: 10.1016/j.femsle.2004.04.005.
10
Informational complexity and functional activity of RNA structures.
J Am Chem Soc. 2004 Apr 28;126(16):5130-7. doi: 10.1021/ja031504a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验