Suppr超能文献

一种用于评估神经系统有效连通性的图形化方法。

A graphical approach for evaluating effective connectivity in neural systems.

作者信息

Eichler Michael

机构信息

Department of Statistics, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):953-67. doi: 10.1098/rstb.2005.1641.

Abstract

The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.

摘要

从脑电图(EEG)或时间分辨功能磁共振成像(fMRI)记录等时间序列数据中识别有效连接性是脑成像中的一个重要问题。一种常用的推断有效连接性的方法是基于向量自回归模型和格兰杰因果关系的概念。然而,这种概率性的因果关系概念在存在潜在变量的情况下可能会导致虚假因果关系。最近,图形模型已被用于讨论多元数据的因果推断问题。在本文中,我们将这些概念扩展到时间序列的情况,并提出一种图形方法来讨论多个时间序列之间的格兰杰因果关系。特别是,我们提出了一种新的图形表示,它允许表征虚假因果关系,因此可用于研究虚假因果关系。该方法通过同步的EEG和fMRI记录进行了演示,这些记录用于研究EEG中的阿尔法节律与fMRI中的血氧水平依赖(BOLD)反应之间的相互关系。结果证实了先前关于EEG阿尔法节律源位置的发现。

相似文献

6
fMRI activation maps based on the NN-ARx model.基于NN-ARx模型的功能磁共振成像激活图。
Neuroimage. 2004 Oct;23(2):680-97. doi: 10.1016/j.neuroimage.2004.06.039.

引用本文的文献

6
New considerations on the validity of the Wiener-Granger causality test.关于维纳-格兰杰因果关系检验有效性的新思考。
Heliyon. 2020 Oct 19;6(10):e05208. doi: 10.1016/j.heliyon.2020.e05208. eCollection 2020 Oct.
8
Supervised Estimation of Granger-Based Causality between Time Series.时间序列之间基于格兰杰因果关系的监督估计
Front Neuroinform. 2017 Nov 29;11:68. doi: 10.3389/fninf.2017.00068. eCollection 2017.

本文引用的文献

4
Partial correlation analysis for the identification of synaptic connections.用于识别突触连接的偏相关分析。
Biol Cybern. 2003 Oct;89(4):289-302. doi: 10.1007/s00422-003-0400-3. Epub 2003 Oct 14.
6
Dynamic causal modelling.动态因果模型
Neuroimage. 2003 Aug;19(4):1273-302. doi: 10.1016/s1053-8119(03)00202-7.
8
Simultaneous EEG and fMRI of the alpha rhythm.阿尔法节律的同步脑电图和功能磁共振成像
Neuroreport. 2002 Dec 20;13(18):2487-92. doi: 10.1097/01.wnr.0000047685.08940.d0.
10
Assessing interactions among neuronal systems using functional neuroimaging.
Neural Netw. 2000 Oct-Nov;13(8-9):871-82. doi: 10.1016/s0893-6080(00)00066-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验