Eichler Michael
Department of Statistics, The University of Chicago, Chicago, IL 60637, USA.
Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):953-67. doi: 10.1098/rstb.2005.1641.
The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.
从脑电图(EEG)或时间分辨功能磁共振成像(fMRI)记录等时间序列数据中识别有效连接性是脑成像中的一个重要问题。一种常用的推断有效连接性的方法是基于向量自回归模型和格兰杰因果关系的概念。然而,这种概率性的因果关系概念在存在潜在变量的情况下可能会导致虚假因果关系。最近,图形模型已被用于讨论多元数据的因果推断问题。在本文中,我们将这些概念扩展到时间序列的情况,并提出一种图形方法来讨论多个时间序列之间的格兰杰因果关系。特别是,我们提出了一种新的图形表示,它允许表征虚假因果关系,因此可用于研究虚假因果关系。该方法通过同步的EEG和fMRI记录进行了演示,这些记录用于研究EEG中的阿尔法节律与fMRI中的血氧水平依赖(BOLD)反应之间的相互关系。结果证实了先前关于EEG阿尔法节律源位置的发现。