Suppr超能文献

用于危及生命的心律失常自动分类的心电图频率和形态参数评估。

Assessment of ECG frequency and morphology parameters for automatic classification of life-threatening cardiac arrhythmias.

作者信息

Krasteva Vessela, Jekova Irena

机构信息

Centre of Biomedical Engineering Prof. Ivan Daskalov, Bulgarian Academy of Science, Sofia.

出版信息

Physiol Meas. 2005 Oct;26(5):707-23. doi: 10.1088/0967-3334/26/5/011. Epub 2005 Jun 17.

Abstract

The reliable recognition and adequate electrical shock therapy of life-threatening cardiac states depend on the electrocardiogram (ECG) descriptors which are used by the defibrillator-embedded automatic arrhythmia analysis algorithms. We propose a method for real-time ECG processing and parameter set extraction using band-pass digital filtration and ECG peak detection. Twelve parameters were derived: (i) seven parameters from the band-pass filter output-six threshold parameters and one peak counter; (ii) five parameters from the ECG peak detection branch, which assess the heart rate, the periodicity and the amplitude/slope symmetry of the ECG peaks. The statistical assessment for more than 36 h of cardiac arrhythmia episodes collected from the public AHA and MIT databases showed that some of the parameters achieved high specificity and sensitivity, but there was no parameter providing 100% separation between non-shockable and shockable rhythms. In order to estimate the influence of the wide variety of cardiac arrhythmias and the different artifacts in real recording conditions, we performed a more detailed study for eight non-shockable and four shockable rhythm categories. The combination of the six top-ranked parameters provided specificity: (i) more than 99% for rhythms with narrow supraventricular complexes, premature ventricular contractions, paced beats and bradycardias; (ii) almost 95% for supraventricular tachycardias; (iii) 91.5% for bundle branch blocks; (iv) 92.2% for slow ventricular tachycardias. The attained sensitivity was above 98% for coarse and fine ventricular fibrillations and 94% for the rapid ventricular tachycardias. The accuracy for the noise contaminated non-shockable and shockable signals exceeded 93%. The proposed parameter set guarantees an accuracy that meets the AHA performance goal for each rhythm category and could be a reliable facility for AED shock-advisory algorithms.

摘要

危及生命的心脏状态的可靠识别和适当的电击治疗取决于除颤器内置的自动心律失常分析算法所使用的心电图(ECG)描述符。我们提出了一种使用带通数字滤波和ECG峰值检测进行实时ECG处理和参数集提取的方法。得出了12个参数:(i)带通滤波器输出的7个参数——6个阈值参数和1个峰值计数器;(ii)ECG峰值检测分支的5个参数,用于评估心率、ECG峰值的周期性以及幅度/斜率对称性。对从公开的AHA和MIT数据库收集的超过36小时的心律失常发作进行的统计评估表明,一些参数具有较高的特异性和敏感性,但没有一个参数能在不可电击和可电击节律之间实现100%的区分。为了估计在实际记录条件下各种心律失常和不同伪差的影响,我们对8种不可电击和4种可电击节律类别进行了更详细的研究。六个排名靠前的参数组合提供的特异性为:(i)对于窄QRS波群室上性心动过速、室性早搏、起搏心律和心动过缓,特异性超过99%;(ii)对于室上性心动过速,特异性接近95%;(iii)对于束支传导阻滞,特异性为91.5%;(iv)对于缓慢型室性心动过速,特异性为92.2%。对于粗颤和细颤,灵敏度达到98%以上,对于快速型室性心动过速,灵敏度为94%。对于受噪声污染的不可电击和可电击信号,准确率超过93%。所提出的参数集保证了满足每个节律类别AHA性能目标的准确率,并且可能成为AED电击建议算法的可靠工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验