Suppr超能文献

用于自动体外除颤器中可电击心律检测的机器学习技术

Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators.

作者信息

Figuera Carlos, Irusta Unai, Morgado Eduardo, Aramendi Elisabete, Ayala Unai, Wik Lars, Kramer-Johansen Jo, Eftestøl Trygve, Alonso-Atienza Felipe

机构信息

Department of Telecommunication Engineering, Universidad Rey Juan Carlos, Madrid, Spain.

Department of Communication Engineering, University of the Basque Country UPV/EHU, Bilbao, Spain.

出版信息

PLoS One. 2016 Jul 21;11(7):e0159654. doi: 10.1371/journal.pone.0159654. eCollection 2016.

Abstract

Early recognition of ventricular fibrillation (VF) and electrical therapy are key for the survival of out-of-hospital cardiac arrest (OHCA) patients treated with automated external defibrillators (AED). AED algorithms for VF-detection are customarily assessed using Holter recordings from public electrocardiogram (ECG) databases, which may be different from the ECG seen during OHCA events. This study evaluates VF-detection using data from both OHCA patients and public Holter recordings. ECG-segments of 4-s and 8-s duration were analyzed. For each segment 30 features were computed and fed to state of the art machine learning (ML) algorithms. ML-algorithms with built-in feature selection capabilities were used to determine the optimal feature subsets for both databases. Patient-wise bootstrap techniques were used to evaluate algorithm performance in terms of sensitivity (Se), specificity (Sp) and balanced error rate (BER). Performance was significantly better for public data with a mean Se of 96.6%, Sp of 98.8% and BER 2.2% compared to a mean Se of 94.7%, Sp of 96.5% and BER 4.4% for OHCA data. OHCA data required two times more features than the data from public databases for an accurate detection (6 vs 3). No significant differences in performance were found for different segment lengths, the BER differences were below 0.5-points in all cases. Our results show that VF-detection is more challenging for OHCA data than for data from public databases, and that accurate VF-detection is possible with segments as short as 4-s.

摘要

早期识别室颤(VF)并进行电治疗是使用自动体外除颤器(AED)治疗院外心脏骤停(OHCA)患者生存的关键。用于VF检测的AED算法通常使用来自公共心电图(ECG)数据库的动态心电图记录进行评估,而这些记录可能与OHCA事件期间出现的ECG不同。本研究使用OHCA患者的数据和公共动态心电图记录来评估VF检测。分析了持续时间为4秒和8秒的ECG片段。为每个片段计算30个特征,并将其输入到先进的机器学习(ML)算法中。使用具有内置特征选择功能的ML算法来确定两个数据库的最佳特征子集。采用患者层面的自助技术,根据敏感性(Se)、特异性(Sp)和平衡错误率(BER)评估算法性能。与OHCA数据的平均Se为94.7%、Sp为96.5%和BER为4.4%相比,公共数据的性能明显更好,平均Se为96.6%、Sp为98.8%和BER为2.2%。OHCA数据准确检测所需的特征数量是公共数据库数据的两倍(分别为6个和3个)。对于不同的片段长度,性能没有显著差异,所有情况下BER差异均低于0.5个百分点。我们的结果表明,VF检测对于OHCA数据比对于公共数据库数据更具挑战性,并且使用短至4秒的片段也可以实现准确的VF检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9453/4956226/041bed636ada/pone.0159654.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验