Suppr超能文献

基于小波分析的室性心律失常分类方案。

A classification scheme for ventricular arrhythmias using wavelets analysis.

机构信息

Department of Electrical and Computer Engineering, Ryerson University, Toronto, Canada.

出版信息

Med Biol Eng Comput. 2013 Feb;51(1-2):153-64. doi: 10.1007/s11517-012-0980-y. Epub 2012 Nov 7.

Abstract

Identification and classification of ventricular arrhythmias such as rhythmic ventricular tachycardia (VT) and disorganized ventricular fibrillation (VF) are vital tasks in guiding implantable devices to deliver appropriate therapy in preventing sudden cardiac deaths. Recent studies have shown VF can exhibit strong regional organizations, which makes the overlap zone between the fast paced rhythmic VT and VF even more ambiguous. Considering that implantable cardioverter-defibrillator (ICD) are primarily rate dependent detectors of arrhythmias and that there may be patients who suffer from arrhythmias that fall in the overlap zone, it is essential to identify the degree of affinity of the arrhythmia toward VT or organized/disorganized VF. The method proposed in this work better categorizes the overlap zone using Wavelet analysis of surface ECGs. Sixty-three surface ECG signal segments from the MIT-BIH database were used to classify between VT, organized VF (OVF), and disorganized VF (DVF). A two-level binary classifier was used to first extract VT with an overall accuracy of 93.7% and then the separation between OVF and DVF with an accuracy of 80.0%. The proposed approach could assist clinicians to provide optimal therapeutic solutions for patients in the overlap zone of VT and VF.

摘要

识别和分类室性心律失常,如节律性室性心动过速(VT)和紊乱性心室颤动(VF),是指导植入式设备提供适当治疗以预防心源性猝死的重要任务。最近的研究表明,VF 可以表现出强烈的区域组织,这使得快速节律性 VT 和 VF 之间的重叠区域更加模糊。考虑到植入式心脏复律除颤器(ICD)主要是基于心律失常的速率依赖性探测器,并且可能存在心律失常落在重叠区域的患者,因此识别心律失常对 VT 或有组织/无组织 VF 的亲和程度至关重要。本工作提出的方法使用体表心电图的小波分析更好地对重叠区域进行分类。使用来自 MIT-BIH 数据库的 63 个体表 ECG 信号段对 VT、有组织的 VF(OVF)和无组织的 VF(DVF)进行分类。使用两级二进制分类器首先提取 VT,总体准确性为 93.7%,然后分离 OVF 和 DVF,准确性为 80.0%。该方法可以帮助临床医生为 VT 和 VF 重叠区域的患者提供最佳治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验