Suppr超能文献

苏云金芽孢杆菌和蜡样芽孢杆菌芽孢衣表面的结构及高分辨率结构

Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces.

作者信息

Plomp Marco, Leighton Terrance J, Wheeler Katherine E, Malkin Alexander J

机构信息

BioSecurity and NanoSciences Laboratory, Department of Chemistry and Materials Science, Lawrence Livermore National Laboratory, L-234, Livermore, California 94551, USA.

出版信息

Langmuir. 2005 Aug 16;21(17):7892-8. doi: 10.1021/la050412r.

Abstract

We have utilized atomic force microscopy (AFM) to visualize the native surface topography and ultrastructure of Bacillus thuringiensis and Bacillus cereus spores in water and in air. AFM was able to resolve the nanostructure of the exosporium and three distinctive classes of appendages. Removal of the exosporium exposed either a hexagonal honeycomb layer (B. thuringiensis) or a rodlet outer spore coat layer (B. cereus). Removal of the rodlet structure from B. cereus spores revealed an underlying honeycomb layer similar to that observed with B. thuringiensis spores. The periodicity of the rodlet structure on the outer spore coat of B. cereus was approximately 8 nm, and the length of the rodlets was limited to the cross-patched domain structure of this layer to approximately 200 nm. The lattice constant of the honeycomb structures was approximately 9 nm for both B. cereus and B. thuringiensis spores. Both honeycomb structures were composed of multiple, disoriented domains with distinct boundaries. Our results demonstrate that variations in storage and preparation procedures result in architectural changes in individual spore surfaces, which establish AFM as a useful tool for evaluation of preparation and processing "fingerprints" of bacterial spores. These results establish that high-resolution AFM has the capacity to reveal species-specific assembly and nanometer scale structure of spore surfaces. These species-specific spore surface structural variations are correlated with sequence divergences in a spore core structural protein SspE.

摘要

我们利用原子力显微镜(AFM)观察了苏云金芽孢杆菌和蜡样芽孢杆菌孢子在水和空气中的天然表面形貌及超微结构。AFM能够分辨出芽孢衣的纳米结构以及三类不同的附属物。去除芽孢衣后,露出的要么是六边形蜂窝层(苏云金芽孢杆菌),要么是小杆状外孢子皮层(蜡样芽孢杆菌)。从蜡样芽孢杆菌孢子上去除小杆状结构后,露出了一层类似于在苏云金芽孢杆菌孢子中观察到的蜂窝层。蜡样芽孢杆菌外孢子皮层上小杆状结构的周期约为8纳米,小杆的长度限制在该层的交叉斑块结构域内,约为200纳米。蜡样芽孢杆菌和苏云金芽孢杆菌孢子的蜂窝结构晶格常数约为9纳米。两种蜂窝结构均由多个具有明显边界的无序结构域组成。我们的结果表明,储存和制备程序的变化会导致单个孢子表面的结构变化,这确立了AFM作为评估细菌孢子制备和加工“指纹”的有用工具。这些结果表明,高分辨率AFM有能力揭示孢子表面的物种特异性组装和纳米尺度结构。这些物种特异性的孢子表面结构变化与孢子核心结构蛋白SspE中的序列差异相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验