Lashkin Volodymyr M
Institute for Nuclear Research, Pr. Nauki 47, Kiev 03680, Ukraine.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 2):066613. doi: 10.1103/PhysRevE.71.066613. Epub 2005 Jun 28.
The creation of solitons of the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions from a boxlike initial pulse is considered. The inverse scattering transform is used. An equation for soliton eigenvalues is obtained. It is shown that simultaneous generation of breathers (solitons with internal oscillations) and one-parametric (nonoscillating) bright or dark solitons is possible. For some sets of initial parameters only breathers or only one-parametric solitons emerge. No more than three bright solitons can emerge (possibly, simultaneously with breathers) in any case, while dark solitons or breathers can arise in arbitrary number when the corresponding thresholds are exceeded. Analytical estimates for the number of generated solitons and the corresponding thresholds are given in some particular cases.
考虑从盒状初始脉冲出发,在非零边界条件下生成导数非线性薛定谔方程的孤子。采用逆散射变换。得到了孤子特征值的方程。结果表明,呼吸子(具有内部振荡的孤子)和单参数(非振荡)亮孤子或暗孤子可以同时产生。对于某些初始参数集,只会出现呼吸子或只会出现单参数孤子。在任何情况下,出现的亮孤子数量不超过三个(可能与呼吸子同时出现),而当超过相应阈值时,暗孤子或呼吸子可以任意数量出现。在一些特定情况下给出了生成孤子数量和相应阈值的解析估计。