Suppr超能文献

与二元不可逆时间依赖性协变量相关的生存曲线的图形表示。

Graphical representation of survival curves associated with a binary non-reversible time dependent covariate.

作者信息

Feuer E J, Hankey B F, Gaynor J J, Wesley M N, Baker S G, Meyer J S

机构信息

Division of Cancer Prevention and Control, National Cancer Institute, Bethesda, MD 20892.

出版信息

Stat Med. 1992 Feb 28;11(4):455-74. doi: 10.1002/sim.4780110408.

Abstract

The use of time dependent covariates has allowed for incorporation into analysis of survival data intervening events that are binary and non-reversible (for example, heart transplant, initial response to chemotherapy). We can represent this type of intervening event as a three-state stochastic process with a starting state (S), an intervening state (I), and an absorbing state (D), which usually represents death. In this paper we present three procedures for calculating survivorship functions which attempt to display the prognostic significance of the time dependent covariate. The first method compares survival from baseline for the two possible paths through the stochastic process; the second method compares overall survival to survival with state I removed from the process; and, the third method compares survival for those already in state I at a landmark time x to those in state S at time x who will never enter state I. We develop discrete hazard estimates for the survival curves associated with the three methods. Two examples illustrate how these methods can yield different results and in which situations one might employ each of the three methods. Extensions to applications with reversible binary time dependent covariates and models with both baseline and time dependent covariates are suggested.

摘要

使用随时间变化的协变量能够将二元且不可逆的干预事件(例如心脏移植、对化疗的初始反应)纳入生存数据分析中。我们可以将这类干预事件表示为一个三状态随机过程,包括起始状态(S)、干预状态(I)和吸收状态(D),吸收状态通常代表死亡。在本文中,我们提出了三种计算生存函数的方法,这些方法试图展现随时间变化的协变量的预后意义。第一种方法比较通过随机过程的两条可能路径从基线开始的生存情况;第二种方法将总体生存情况与从过程中去除状态I后的生存情况进行比较;第三种方法比较在标志性时间x时已处于状态I的个体的生存情况与在时间x时处于状态S且永远不会进入状态I的个体的生存情况。我们为与这三种方法相关的生存曲线开发了离散风险估计。两个例子说明了这些方法如何产生不同的结果,以及在哪些情况下可能会使用这三种方法中的每一种。还提出了对具有可逆二元随时间变化协变量的应用以及同时具有基线和随时间变化协变量的模型的扩展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验