Schultz Lonni R, Peterson Edward L, Breslau Naomi
Department of Biostatistics and Research Epidemiology, Henry Ford Health Systems, Detroit, MI, USA.
Int J Methods Psychiatr Res. 2002;11(2):68-74. doi: 10.1002/mpr.124.
Graphical representation of statistical results is often used to assist readers in the interpretation of the findings. This is especially true for survival analysis where there is an interest in explaining the patterns of survival over time for specific covariates. For fixed categorical covariates, such as a group membership indicator, Kaplan-Meier estimates (1958) can be used to display the curves. For time-dependent covariates this method may not be adequate. Simon and Makuch (1984) proposed a technique that evaluates the covariate status of the individuals remaining at risk at each event time. The method takes into account the change in an individual's covariate status over time. The survival computations are the same as the Kaplan-Meier method, in that the conditional survival estimates are the function of the ratio of the number of events to the number at risk at each event time. The difference between the two methods is that the individuals at risk within each level defined by the covariate is not fixed at time 0 in the Simon and Makuch method as it is with the Kaplan-Meier method. Examples of how the two methods can differ for time dependent covariates in Cox proportional hazards regression analysis are presented.
统计结果的图形表示通常用于帮助读者解释研究结果。这在生存分析中尤为如此,在生存分析中,人们感兴趣的是解释特定协变量随时间的生存模式。对于固定的分类协变量,如组成员指标,可以使用Kaplan-Meier估计值(1958年)来显示曲线。对于随时间变化的协变量,这种方法可能不够。Simon和Makuch(1984年)提出了一种技术,该技术评估在每个事件时间仍处于风险中的个体的协变量状态。该方法考虑了个体协变量状态随时间的变化。生存计算与Kaplan-Meier方法相同,因为条件生存估计值是每个事件时间事件数与处于风险中的个体数之比的函数。两种方法的区别在于,在Simon和Makuch方法中,由协变量定义的每个水平内处于风险中的个体在时间0时并不像Kaplan-Meier方法那样固定。文中给出了在Cox比例风险回归分析中,两种方法对于随时间变化的协变量可能存在差异的示例。